Improving node similarity for discovering community structure in complex networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099089" target="_blank" >RIV/61989100:27240/16:86099089 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/16:86099089
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-42345-6_7" target="_blank" >http://dx.doi.org/10.1007/978-3-319-42345-6_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-42345-6_7" target="_blank" >10.1007/978-3-319-42345-6_7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving node similarity for discovering community structure in complex networks
Popis výsledku v původním jazyce
Community detection is to detect groups consisting of densely connected nodes, and having sparse connections between them. Many researchers indicate that detecting community structures in complex networks can extract plenty of useful information, such as the structural features, network properties, and dynamic characteristics of the community. Several community detection methods introduced different similarity measures between nodes, and their performance can be improved. In this paper, we propose a community detection method based on an improvement of node similarities. Our method initializes a level for each node and assigns nodes into a community based on similarity between nodes. Then it selects core communities and expands those communities by layers. Finally, we merge communities and choose the best community in the network. The experimental results show that our method achieves state-of-the-art performance. (C) Springer International Publishing Switzerland 2016.
Název v anglickém jazyce
Improving node similarity for discovering community structure in complex networks
Popis výsledku anglicky
Community detection is to detect groups consisting of densely connected nodes, and having sparse connections between them. Many researchers indicate that detecting community structures in complex networks can extract plenty of useful information, such as the structural features, network properties, and dynamic characteristics of the community. Several community detection methods introduced different similarity measures between nodes, and their performance can be improved. In this paper, we propose a community detection method based on an improvement of node similarities. Our method initializes a level for each node and assigns nodes into a community based on similarity between nodes. Then it selects core communities and expands those communities by layers. Finally, we merge communities and choose the best community in the network. The experimental results show that our method achieves state-of-the-art performance. (C) Springer International Publishing Switzerland 2016.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). volume 9795
ISBN
978-3-319-42344-9
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
12
Strana od-do
74-85
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Ho Či Minovo Město
Datum konání akce
2. 8. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—