Multi-agent architecture for Multi-objective optimization of Flexible Neural Tree
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099095" target="_blank" >RIV/61989100:27240/16:86099095 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.neucom.2016.06.019" target="_blank" >http://dx.doi.org/10.1016/j.neucom.2016.06.019</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.neucom.2016.06.019" target="_blank" >10.1016/j.neucom.2016.06.019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-agent architecture for Multi-objective optimization of Flexible Neural Tree
Popis výsledku v původním jazyce
In this paper, a multi-agent system is introduced to parallelize the Flexible Beta Basis Function Neural Network (FBBFNT)' training as a response to the time cost challenge. Different agents are formed; a Structure Agent is designed for the FBBFNT structure optimization and a variable set of Parameter Agents is used for the FBBFNT parameter optimization. The main objectives of the FBBFNT learning process were the accuracy and the structure complexity. With the proposed multi-agent system, the main purpose is to reach a good balance between these objectives. For that, a multi-objective context was adopted which based on Pareto dominance. The agents use two algorithms: the Pareto dominance Extended Genetic Programming (PEGP) and the Pareto Multi-Dimensional Particle Swarm Optimization (PMD_PSO) algorithms for the structure and parameter optimization, respectively. The proposed system is called Pareto Multi-Agent Flexible Neural Tree (PMA_FNT).To assess the effectiveness of . PMA_FNT, four benchmark real datasets of classification are tested. The results compared with some classifiers published in the literature. (C) 2016 Elsevier B.V.
Název v anglickém jazyce
Multi-agent architecture for Multi-objective optimization of Flexible Neural Tree
Popis výsledku anglicky
In this paper, a multi-agent system is introduced to parallelize the Flexible Beta Basis Function Neural Network (FBBFNT)' training as a response to the time cost challenge. Different agents are formed; a Structure Agent is designed for the FBBFNT structure optimization and a variable set of Parameter Agents is used for the FBBFNT parameter optimization. The main objectives of the FBBFNT learning process were the accuracy and the structure complexity. With the proposed multi-agent system, the main purpose is to reach a good balance between these objectives. For that, a multi-objective context was adopted which based on Pareto dominance. The agents use two algorithms: the Pareto dominance Extended Genetic Programming (PEGP) and the Pareto Multi-Dimensional Particle Swarm Optimization (PMD_PSO) algorithms for the structure and parameter optimization, respectively. The proposed system is called Pareto Multi-Agent Flexible Neural Tree (PMA_FNT).To assess the effectiveness of . PMA_FNT, four benchmark real datasets of classification are tested. The results compared with some classifiers published in the literature. (C) 2016 Elsevier B.V.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neurocomputing
ISSN
0925-2312
e-ISSN
—
Svazek periodika
214
Číslo periodika v rámci svazku
NOV
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
307-316
Kód UT WoS článku
000386741300029
EID výsledku v databázi Scopus
2-s2.0-84978763693