Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Segmentation of macular lesions using active shape contour method

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099576" target="_blank" >RIV/61989100:27240/16:86099576 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-3-319-27644-1_20" target="_blank" >http://dx.doi.org/10.1007/978-3-319-27644-1_20</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-27644-1_20" target="_blank" >10.1007/978-3-319-27644-1_20</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Segmentation of macular lesions using active shape contour method

  • Popis výsledku v původním jazyce

    Age-related macular degeneration (ARMD) is one of the most widespread diseases of the eye fundus and is the most common cause of vision loss for those over the age of 60. There are several ways to diagnose ARMD. One of them is the Fundus Autofluorescence (FAF) method, and is one of the modalities of Heidelberg Engineering diagnostic devices. The BluePeakTM modality utilizes the fluorescence of lipofuscin (a pigment in the affected cells) to display the extent of the disease's progression. The native image is further evaluated to more precisely specify the diagnosis of the disease-it is necessary to determine the size of the macular lesion area. Calculations of the geometric parameters of macular lesions were conducted in the MATLAB(R) software; the size of the lesion area was determined using the Image Processing Toolbox. The automated lesion detection method occurs using a parametric active contour (active contours driven by local Gaussian distribution fitting energy) that encloses the affected macular lesion, thereby allowing a precise determination of the affected area. This method is relatively quick for use in clinical practice and allows evaluation the macular lesions exactly based on the proportion with the feature extraction in advance. The proposed methodology is fully automatic. In the algorithm input we define area of interest and initial circle, which is placed inside of the object. Image background issuppressed by low pass filter. Final contour is formed in consecutive steps, up to shape of macular lesion. (C) Springer International Publishing Switzerland 2016.

  • Název v anglickém jazyce

    Segmentation of macular lesions using active shape contour method

  • Popis výsledku anglicky

    Age-related macular degeneration (ARMD) is one of the most widespread diseases of the eye fundus and is the most common cause of vision loss for those over the age of 60. There are several ways to diagnose ARMD. One of them is the Fundus Autofluorescence (FAF) method, and is one of the modalities of Heidelberg Engineering diagnostic devices. The BluePeakTM modality utilizes the fluorescence of lipofuscin (a pigment in the affected cells) to display the extent of the disease's progression. The native image is further evaluated to more precisely specify the diagnosis of the disease-it is necessary to determine the size of the macular lesion area. Calculations of the geometric parameters of macular lesions were conducted in the MATLAB(R) software; the size of the lesion area was determined using the Image Processing Toolbox. The automated lesion detection method occurs using a parametric active contour (active contours driven by local Gaussian distribution fitting energy) that encloses the affected macular lesion, thereby allowing a precise determination of the affected area. This method is relatively quick for use in clinical practice and allows evaluation the macular lesions exactly based on the proportion with the feature extraction in advance. The proposed methodology is fully automatic. In the algorithm input we define area of interest and initial circle, which is placed inside of the object. Image background issuppressed by low pass filter. Final contour is formed in consecutive steps, up to shape of macular lesion. (C) Springer International Publishing Switzerland 2016.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advances in Intelligent Systems and Computing. Volume 423

  • ISSN

    2194-5357

  • e-ISSN

  • Svazek periodika

    423

  • Číslo periodika v rámci svazku

    2016

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    9

  • Strana od-do

    213-221

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-84958964415