Differential Evolution Optimized Fuzzy Controller for Wireless Sensor Network Energy Management
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86100120" target="_blank" >RIV/61989100:27240/16:86100120 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/FUZZ-IEEE.2016.7737708" target="_blank" >http://dx.doi.org/10.1109/FUZZ-IEEE.2016.7737708</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/FUZZ-IEEE.2016.7737708" target="_blank" >10.1109/FUZZ-IEEE.2016.7737708</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Differential Evolution Optimized Fuzzy Controller for Wireless Sensor Network Energy Management
Popis výsledku v původním jazyce
Differential evolution was used to optimize a fuzzy energy controller for a wireless sensor node. The evolved controller was validated by simulating a small wireless sensor network. The optimization goal was to best utilize the solar energy available for harvest while preserving a backup energy reserve. Performing the highest number of operations possible while leaving the energy reserve untouched increases deployment time and reliability. The controller being optimized was a Takagi-Sugeno fuzzy controller with inputs for the state of the energy buffer and a forecast of current day solar energy available for harvest. Two types of forecasts were used: one ideal and another based on atmospheric pressure measurements. Compared to a human-created reference controller, the evolved controller collected 124.96% of the measurements across the network, while only consuming 1.07% of the energy reserve capacity using a perfect forecast with similar results using the pressure-based forecast, representing an improvement in possible network deployment duration.
Název v anglickém jazyce
Differential Evolution Optimized Fuzzy Controller for Wireless Sensor Network Energy Management
Popis výsledku anglicky
Differential evolution was used to optimize a fuzzy energy controller for a wireless sensor node. The evolved controller was validated by simulating a small wireless sensor network. The optimization goal was to best utilize the solar energy available for harvest while preserving a backup energy reserve. Performing the highest number of operations possible while leaving the energy reserve untouched increases deployment time and reliability. The controller being optimized was a Takagi-Sugeno fuzzy controller with inputs for the state of the energy buffer and a forecast of current day solar energy available for harvest. Two types of forecasts were used: one ideal and another based on atmospheric pressure measurements. Compared to a human-created reference controller, the evolved controller collected 124.96% of the measurements across the network, while only consuming 1.07% of the energy reserve capacity using a perfect forecast with similar results using the pressure-based forecast, representing an improvement in possible network deployment duration.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2016 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016; Vancouver; Canada; 24 July 2016 through 29 July 2016
ISBN
978-1-5090-0625-0
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
352-358
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
New York
Místo konání akce
Vancouver
Datum konání akce
24. 7. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000392150700049