First principles modelling of thermodynamical properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10236997" target="_blank" >RIV/61989100:27240/17:10236997 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/17:10236997
Výsledek na webu
<a href="http://www.ctresources.info/ccp/paper.html?id=9228" target="_blank" >http://www.ctresources.info/ccp/paper.html?id=9228</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
First principles modelling of thermodynamical properties
Popis výsledku v původním jazyce
In this contribution we focus on HPC aspects of a fully quantum simulation of manyparticle systems at nonzero temperatures and pressures. Our long term intention is to combine the path integral Monte Carlo (PIMC) [1] approach with the fully quantum potentials obtained from electronic structure calculations. Since both of these methods are parallelizable on various levels, the resulting code utilizes multilevel parallelization. If the parallel tempering algorithm [2] is used, the number of parallelization levels can grow up to four. At the top level, the parallel tempering algorithm takes place, running tens to hundreds of simulations in parallel. Each PIMC simulation then calculates in parallel hundreds of evaluations of the density matrix at each Monte Carlo step. Each of these evaluations is done via the electronic structure module which utilizes the bottom level parallelization using hundreds of cores. If the electronic structure module is implemented using the tensor methods [3], the parallelization of the module can be done in two levels. The main aim of this paper is a) to discuss the scalability of these methods and b) independently estimate the optimal CPU workload under various computational conditions. According to the scalability of the components, the expected scalability of the whole tool can easily reach exascale, utilizing hundreds of thousands of computational cores and more. © Civil-Comp Press, 2017.
Název v anglickém jazyce
First principles modelling of thermodynamical properties
Popis výsledku anglicky
In this contribution we focus on HPC aspects of a fully quantum simulation of manyparticle systems at nonzero temperatures and pressures. Our long term intention is to combine the path integral Monte Carlo (PIMC) [1] approach with the fully quantum potentials obtained from electronic structure calculations. Since both of these methods are parallelizable on various levels, the resulting code utilizes multilevel parallelization. If the parallel tempering algorithm [2] is used, the number of parallelization levels can grow up to four. At the top level, the parallel tempering algorithm takes place, running tens to hundreds of simulations in parallel. Each PIMC simulation then calculates in parallel hundreds of evaluations of the density matrix at each Monte Carlo step. Each of these evaluations is done via the electronic structure module which utilizes the bottom level parallelization using hundreds of cores. If the electronic structure module is implemented using the tensor methods [3], the parallelization of the module can be done in two levels. The main aim of this paper is a) to discuss the scalability of these methods and b) independently estimate the optimal CPU workload under various computational conditions. According to the scalability of the components, the expected scalability of the whole tool can easily reach exascale, utilizing hundreds of thousands of computational cores and more. © Civil-Comp Press, 2017.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Civil-Comp Proceedings
ISSN
1759-3433
e-ISSN
—
Svazek periodika
111
Číslo periodika v rámci svazku
nečíslováno
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
"@@@###"
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85020476808