The stochastic galerkin method for darcy flow problem with log-normal random field coefficients
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10237765" target="_blank" >RIV/61989100:27240/17:10237765 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/17:10237765
Výsledek na webu
<a href="http://advances.utc.sk/index.php/AEEE/article/view/2280/1238" target="_blank" >http://advances.utc.sk/index.php/AEEE/article/view/2280/1238</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15598/aeee.v15i2.2280" target="_blank" >10.15598/aeee.v15i2.2280</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The stochastic galerkin method for darcy flow problem with log-normal random field coefficients
Popis výsledku v původním jazyce
This article presents a study of the Stochastic Galerkin Method (SGM) applied to the Darcy flow problem with a log-normally distributed random material field given by a mean value and an autocovari-ance function. We divide the solution of the problem into two parts. The first one is the decomposition of a random field into a sum of products of a random vector and a function of spatial coordinates; this can be achieved using the Karhunen-Loeve expansion. The second part is the solution of the problem using SGM. SGM is a simple extension of the Galerkin method in which the random variables represent additional problem dimensions. For the discretization of the problem, we use a finite element basis for spatial variables and a polynomial chaos discretization for random variables. The results of SGM can be utilised for the analysis of the problem, such as the examination of the average flow, or as a tool for the Bayesian approach to inverse problems. © 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING.
Název v anglickém jazyce
The stochastic galerkin method for darcy flow problem with log-normal random field coefficients
Popis výsledku anglicky
This article presents a study of the Stochastic Galerkin Method (SGM) applied to the Darcy flow problem with a log-normally distributed random material field given by a mean value and an autocovari-ance function. We divide the solution of the problem into two parts. The first one is the decomposition of a random field into a sum of products of a random vector and a function of spatial coordinates; this can be achieved using the Karhunen-Loeve expansion. The second part is the solution of the problem using SGM. SGM is a simple extension of the Galerkin method in which the random variables represent additional problem dimensions. For the discretization of the problem, we use a finite element basis for spatial variables and a polynomial chaos discretization for random variables. The results of SGM can be utilised for the analysis of the problem, such as the examination of the average flow, or as a tool for the Bayesian approach to inverse problems. © 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Electrical and Electronic Engineering
ISSN
1336-1376
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
13
Strana od-do
267-279
Kód UT WoS článku
000409044400018
EID výsledku v databázi Scopus
2-s2.0-85025595208