Graph construction based on local representativeness
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238662" target="_blank" >RIV/61989100:27240/17:10238662 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-62389-4_54" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-62389-4_54</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-62389-4_54" target="_blank" >10.1007/978-3-319-62389-4_54</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graph construction based on local representativeness
Popis výsledku v původním jazyce
Graph construction is a known method of transferring the problem of classic vector data mining to network analysis. The advantage of networks is that the data are extended by links between certain (similar) pairs of data objects, so relationships in the data can then be visualized in a natural way. In this area, there are many algorithms, often with significantly different results. A common problem for all algorithms is to find relationships in data so as to preserve the characteristics related to the internal structure of the data. We present a method of graph construction based on a network reduction algorithm, which is found on analysis of the representativeness of the nodes of the network. It was verified experimentally that this algorithm preserves structural characteristics of the network during the reduction. This approach serves as the basis for our method which does not require any default parameters. In our experiments, we show the comparison of our graph construction method with one well-known method based on the most commonly used approach. © 2017, Springer International Publishing AG.
Název v anglickém jazyce
Graph construction based on local representativeness
Popis výsledku anglicky
Graph construction is a known method of transferring the problem of classic vector data mining to network analysis. The advantage of networks is that the data are extended by links between certain (similar) pairs of data objects, so relationships in the data can then be visualized in a natural way. In this area, there are many algorithms, often with significantly different results. A common problem for all algorithms is to find relationships in data so as to preserve the characteristics related to the internal structure of the data. We present a method of graph construction based on a network reduction algorithm, which is found on analysis of the representativeness of the nodes of the network. It was verified experimentally that this algorithm preserves structural characteristics of the network during the reduction. This approach serves as the basis for our method which does not require any default parameters. In our experiments, we show the comparison of our graph construction method with one well-known method based on the most commonly used approach. © 2017, Springer International Publishing AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/NV16-31852A" target="_blank" >NV16-31852A: Predikce rizika reoperace u pacientů s TEP kyčlí a kolen na základě imunogenetického vyšetření: vývoj kalkulátoru rizika pro rutinní klinické použití</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 10392
ISBN
978-3-319-62388-7
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
12
Strana od-do
654-665
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Hongkong
Datum konání akce
3. 8. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—