The Effect of the Forgetting Factor and Filter Length on the RLS Adaptive Control Algorithm in Shunt Active Power Filter
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10241612" target="_blank" >RIV/61989100:27240/17:10241612 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.proceedings.com/35784.html" target="_blank" >http://www.proceedings.com/35784.html</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Effect of the Forgetting Factor and Filter Length on the RLS Adaptive Control Algorithm in Shunt Active Power Filter
Popis výsledku v původním jazyce
This article deals with the use Recursive Least Squares (RLS) algorithm for the management of Shunt Active Power Filter (SAPF). When using the RLS algorithm the key parameter is a suitable choice of the Forgetting Factor. The selection of the forgetting factor has a significant influence on the performance of the SAPF, i.e. on the value of the resulting Signal to Noise Ratio (SNR). The value of the forgetting factor leads to a tradeoff between the stability and the tracking ability. In a system identification setting, both the filter length and a leakage phenomenon affect the selection of the forgetting factor. Within the performed experiments were defined and visualized the 3D loss function for the RLS algorithm which defines the working area based on the value of SNR. Experimental results show that the choice of the Forgetting Factor parameter has a significant impact on the quality and speed of the estimation the compensation current.
Název v anglickém jazyce
The Effect of the Forgetting Factor and Filter Length on the RLS Adaptive Control Algorithm in Shunt Active Power Filter
Popis výsledku anglicky
This article deals with the use Recursive Least Squares (RLS) algorithm for the management of Shunt Active Power Filter (SAPF). When using the RLS algorithm the key parameter is a suitable choice of the Forgetting Factor. The selection of the forgetting factor has a significant influence on the performance of the SAPF, i.e. on the value of the resulting Signal to Noise Ratio (SNR). The value of the forgetting factor leads to a tradeoff between the stability and the tracking ability. In a system identification setting, both the filter length and a leakage phenomenon affect the selection of the forgetting factor. Within the performed experiments were defined and visualized the 3D loss function for the RLS algorithm which defines the working area based on the value of SNR. Experimental results show that the choice of the Forgetting Factor parameter has a significant impact on the quality and speed of the estimation the compensation current.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 9th International Scientific Symposium on Electrical Power Engineering, ELEKTROENERGETIKA 2017
ISBN
978-80-553-3195-9
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
5
Strana od-do
508-512
Název nakladatele
Technical University of Košice
Místo vydání
Košice
Místo konání akce
Slara Lesna
Datum konání akce
12. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000431847700099