A valid rule of beta-conversion for the logic of partial functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A86098994" target="_blank" >RIV/61989100:27240/17:86098994 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.klemens.sav.sk/fiusav/organon/?q=en/valid-rule-v-conversion-logic-partial-functions" target="_blank" >http://www.klemens.sav.sk/fiusav/organon/?q=en/valid-rule-v-conversion-logic-partial-functions</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A valid rule of beta-conversion for the logic of partial functions
Popis výsledku v původním jazyce
The goal of this paper is to examine the conditions of validity for the rule of β-conversion in TIL, which is a hyperintensional, typed lambda-calculus of partial functions. The rule of β-reduction is a fundamental computational rule of the lambda-calculi and functional programming languages. However, it is a well-known fact that the specification of this rule is ambiguous. There are two procedurally non-equivalent ways of executing the rule, namely β-conversion ‘by name’ and β-conversion ‘by value’. In the lambda-calculi conversion by name is usually applied, though it is known that such a conversion is not unconditionally valid when partial functions are involved. If a procedure that is typed to produce an argument value is improper by failing to produce one, conversion by name cannot be validly applied. On the other hand, conversion by value is valid even in the case of improperness. Moreover, we show that in a typed lambda-calculus the specification of lambda-closure is also not unambiguous. There is an interpretation of this specification under which beta-reduction by name is not valid even when the argument procedure does not fail to produce a value. As a result, we present a universally valid rule of beta-reduction by value.
Název v anglickém jazyce
A valid rule of beta-conversion for the logic of partial functions
Popis výsledku anglicky
The goal of this paper is to examine the conditions of validity for the rule of β-conversion in TIL, which is a hyperintensional, typed lambda-calculus of partial functions. The rule of β-reduction is a fundamental computational rule of the lambda-calculi and functional programming languages. However, it is a well-known fact that the specification of this rule is ambiguous. There are two procedurally non-equivalent ways of executing the rule, namely β-conversion ‘by name’ and β-conversion ‘by value’. In the lambda-calculi conversion by name is usually applied, though it is known that such a conversion is not unconditionally valid when partial functions are involved. If a procedure that is typed to produce an argument value is improper by failing to produce one, conversion by name cannot be validly applied. On the other hand, conversion by value is valid even in the case of improperness. Moreover, we show that in a typed lambda-calculus the specification of lambda-closure is also not unambiguous. There is an interpretation of this specification under which beta-reduction by name is not valid even when the argument procedure does not fail to produce a value. As a result, we present a universally valid rule of beta-reduction by value.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-13277S" target="_blank" >GA15-13277S: Hyperintensionální logika pro analýzu přirozeného jazyka</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Organon F
ISSN
1335-0668
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
27
Strana od-do
10-36
Kód UT WoS článku
000397837700002
EID výsledku v databázi Scopus
2-s2.0-85017103356