Automated text detection and character recognition in natural scenes based on local image features and contour processing techniques
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10239792" target="_blank" >RIV/61989100:27240/18:10239792 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-73888-8_8" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-73888-8_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-73888-8_8" target="_blank" >10.1007/978-3-319-73888-8_8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automated text detection and character recognition in natural scenes based on local image features and contour processing techniques
Popis výsledku v původním jazyce
A novel effective scheme for automated text detection and character recognition in natural scene images is presented in the paper. The proposed text detection approach belongs to the category of connected component-based methods utilizing Maximally Stable Extremal Regions (MSER) feature detector. Various literature based geometrical and contour oriented filters, used to distinguish between text and non-text MSER regions as well as to group remaining text regions into words and phrases, are applied first. Novel filters, designed to reject remaining non-text regions and words (phrases) that are not in line with assumed properties, are utilized next. Final words and phrases are recognized using an OCR system. Finally, an application of the presented approach within the IMCOP content discovery and delivery platform is briefly described. (C) Springer International Publishing AG 2018.
Název v anglickém jazyce
Automated text detection and character recognition in natural scenes based on local image features and contour processing techniques
Popis výsledku anglicky
A novel effective scheme for automated text detection and character recognition in natural scene images is presented in the paper. The proposed text detection approach belongs to the category of connected component-based methods utilizing Maximally Stable Extremal Regions (MSER) feature detector. Various literature based geometrical and contour oriented filters, used to distinguish between text and non-text MSER regions as well as to group remaining text regions into words and phrases, are applied first. Novel filters, designed to reject remaining non-text regions and words (phrases) that are not in line with assumed properties, are utilized next. Final words and phrases are recognized using an OCR system. Finally, an application of the presented approach within the IMCOP content discovery and delivery platform is briefly described. (C) Springer International Publishing AG 2018.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing. Volume 722
ISBN
978-3-319-73887-1
ISSN
2194-5357
e-ISSN
2194-5365
Počet stran výsledku
7
Strana od-do
42-48
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Dubaj
Datum konání akce
7. 1. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—