Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Machine learning based electric load forecasting for short and long-term period

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10240148" target="_blank" >RIV/61989100:27240/18:10240148 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27730/18:10240148

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/WF-IoT.2018.8355123" target="_blank" >http://dx.doi.org/10.1109/WF-IoT.2018.8355123</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/WF-IoT.2018.8355123" target="_blank" >10.1109/WF-IoT.2018.8355123</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Machine learning based electric load forecasting for short and long-term period

  • Popis výsledku v původním jazyce

    Electricity is currently the most important energy vector in the domestic sector and industry. Unlike fuels, electricity is hard and expensive to store. This creates the need of precise coupling between generation and demand. In addition, the transmission lines of electric power need to be sized for a given maximum power, and overloading them may result in blackout or electrical accidents. For these reasons, energy consumption forecasting is vital. The time scale for forecasting depends on who is interested in such prediction. Grid operators have to predict the electricity demand for the next day, to program the generation accordingly. Grid designers have to predict energy consumption at the scale of years, to ensure that the infrastructure is sufficient. On the other hand, smart grid controllers with almost instant response time may need a prediction on the order of minutes. We have seen that changing the time scale in electricity load forecasting changes the approach, and that depending on the scale different methods should be used to ensure the highest accuracy with the smallest computational cost. We show here how forecasting accuracy decreases with the increase of time scale due to the impossibility of using of all variables. Several well established computational models were compared on three different regression based criteria and the results revealed that boosting model was able to outperform their competitors in most of the comparisons.

  • Název v anglickém jazyce

    Machine learning based electric load forecasting for short and long-term period

  • Popis výsledku anglicky

    Electricity is currently the most important energy vector in the domestic sector and industry. Unlike fuels, electricity is hard and expensive to store. This creates the need of precise coupling between generation and demand. In addition, the transmission lines of electric power need to be sized for a given maximum power, and overloading them may result in blackout or electrical accidents. For these reasons, energy consumption forecasting is vital. The time scale for forecasting depends on who is interested in such prediction. Grid operators have to predict the electricity demand for the next day, to program the generation accordingly. Grid designers have to predict energy consumption at the scale of years, to ensure that the infrastructure is sufficient. On the other hand, smart grid controllers with almost instant response time may need a prediction on the order of minutes. We have seen that changing the time scale in electricity load forecasting changes the approach, and that depending on the scale different methods should be used to ensure the highest accuracy with the smallest computational cost. We show here how forecasting accuracy decreases with the increase of time scale due to the impossibility of using of all variables. Several well established computational models were compared on three different regression based criteria and the results revealed that boosting model was able to outperform their competitors in most of the comparisons.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    IEEE World Forum on Internet of Things, WF-IoT 2018 - Proceedings

  • ISBN

    978-1-4673-9944-9

  • ISSN

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    6

  • Strana od-do

    511-516

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    Singapur

  • Datum konání akce

    5. 2. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku