Machine learning based electric load forecasting for short and long-term period
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10240148" target="_blank" >RIV/61989100:27240/18:10240148 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27730/18:10240148
Výsledek na webu
<a href="http://dx.doi.org/10.1109/WF-IoT.2018.8355123" target="_blank" >http://dx.doi.org/10.1109/WF-IoT.2018.8355123</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/WF-IoT.2018.8355123" target="_blank" >10.1109/WF-IoT.2018.8355123</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine learning based electric load forecasting for short and long-term period
Popis výsledku v původním jazyce
Electricity is currently the most important energy vector in the domestic sector and industry. Unlike fuels, electricity is hard and expensive to store. This creates the need of precise coupling between generation and demand. In addition, the transmission lines of electric power need to be sized for a given maximum power, and overloading them may result in blackout or electrical accidents. For these reasons, energy consumption forecasting is vital. The time scale for forecasting depends on who is interested in such prediction. Grid operators have to predict the electricity demand for the next day, to program the generation accordingly. Grid designers have to predict energy consumption at the scale of years, to ensure that the infrastructure is sufficient. On the other hand, smart grid controllers with almost instant response time may need a prediction on the order of minutes. We have seen that changing the time scale in electricity load forecasting changes the approach, and that depending on the scale different methods should be used to ensure the highest accuracy with the smallest computational cost. We show here how forecasting accuracy decreases with the increase of time scale due to the impossibility of using of all variables. Several well established computational models were compared on three different regression based criteria and the results revealed that boosting model was able to outperform their competitors in most of the comparisons.
Název v anglickém jazyce
Machine learning based electric load forecasting for short and long-term period
Popis výsledku anglicky
Electricity is currently the most important energy vector in the domestic sector and industry. Unlike fuels, electricity is hard and expensive to store. This creates the need of precise coupling between generation and demand. In addition, the transmission lines of electric power need to be sized for a given maximum power, and overloading them may result in blackout or electrical accidents. For these reasons, energy consumption forecasting is vital. The time scale for forecasting depends on who is interested in such prediction. Grid operators have to predict the electricity demand for the next day, to program the generation accordingly. Grid designers have to predict energy consumption at the scale of years, to ensure that the infrastructure is sufficient. On the other hand, smart grid controllers with almost instant response time may need a prediction on the order of minutes. We have seen that changing the time scale in electricity load forecasting changes the approach, and that depending on the scale different methods should be used to ensure the highest accuracy with the smallest computational cost. We show here how forecasting accuracy decreases with the increase of time scale due to the impossibility of using of all variables. Several well established computational models were compared on three different regression based criteria and the results revealed that boosting model was able to outperform their competitors in most of the comparisons.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IEEE World Forum on Internet of Things, WF-IoT 2018 - Proceedings
ISBN
978-1-4673-9944-9
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
511-516
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Singapur
Datum konání akce
5. 2. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—