Game Characterization of Probabilistic Bisimilarity, and Applications to Pushdown Automata
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241459" target="_blank" >RIV/61989100:27240/18:10241459 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/18:73590198
Výsledek na webu
<a href="https://lmcs.episciences.org/4972/pdf" target="_blank" >https://lmcs.episciences.org/4972/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23638/LMCS-14(4:13)2018" target="_blank" >10.23638/LMCS-14(4:13)2018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Game Characterization of Probabilistic Bisimilarity, and Applications to Pushdown Automata
Popis výsledku v původním jazyce
We study the bisimilarity problem for probabilistic pushdown automata (pPDA) and subclasses thereof. Our definition of pPDA allows both probabilistic and non-deterministic branching, generalising the classical notion of pushdown automata (without epsilon-transitions). We first show a general characterization of probabilistic bisimilarity in terms of two-player games, which naturally reduces checking bisimilarity of probabilistic labelled transition systems to checking bisimilarity of standard (non-deterministic) labelled transition systems. This reduction can be easily implemented in the framework of pPDA, allowing to use known results for standard (non-probabilistic) PDA and their subclasses. A direct use of the reduction incurs an exponential increase of complexity, which does not matter in deriving decidability of bisimilarity for pPDA due to the non-elementary complexity of the problem. In the cases of probabilistic one-counter automata (pOCA), of probabilistic visibly pushdown automata (pvPDA), and of probabilistic basic process algebras (i.e., single-state pPDA) we show that an implicit use of the reduction can avoid the complexity increase; we thus get PSPACE, EXPTIME, and 2-EXPTIME upper bounds, respectively, like for the respective non-probabilistic versions. The bisimilarity problems for OCA and vPDA are known to have matching lower bounds (thus being PSPACE-complete and EXPTIME-complete, respectively); we show that these lower bounds also hold for fully probabilistic versions that do not use non-determinism.
Název v anglickém jazyce
Game Characterization of Probabilistic Bisimilarity, and Applications to Pushdown Automata
Popis výsledku anglicky
We study the bisimilarity problem for probabilistic pushdown automata (pPDA) and subclasses thereof. Our definition of pPDA allows both probabilistic and non-deterministic branching, generalising the classical notion of pushdown automata (without epsilon-transitions). We first show a general characterization of probabilistic bisimilarity in terms of two-player games, which naturally reduces checking bisimilarity of probabilistic labelled transition systems to checking bisimilarity of standard (non-deterministic) labelled transition systems. This reduction can be easily implemented in the framework of pPDA, allowing to use known results for standard (non-probabilistic) PDA and their subclasses. A direct use of the reduction incurs an exponential increase of complexity, which does not matter in deriving decidability of bisimilarity for pPDA due to the non-elementary complexity of the problem. In the cases of probabilistic one-counter automata (pOCA), of probabilistic visibly pushdown automata (pvPDA), and of probabilistic basic process algebras (i.e., single-state pPDA) we show that an implicit use of the reduction can avoid the complexity increase; we thus get PSPACE, EXPTIME, and 2-EXPTIME upper bounds, respectively, like for the respective non-probabilistic versions. The bisimilarity problems for OCA and vPDA are known to have matching lower bounds (thus being PSPACE-complete and EXPTIME-complete, respectively); we show that these lower bounds also hold for fully probabilistic versions that do not use non-determinism.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-13784S" target="_blank" >GA15-13784S: Výpočetní složitost vybraných verifikačních problémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Logical Methods in Computer Science
ISSN
1860-5974
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
4:13
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
25
Strana od-do
1-25
Kód UT WoS článku
000452745300017
EID výsledku v databázi Scopus
2-s2.0-85060234395