An efficient approach for mining sequential patterns using multiple threads on very large databases
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241747" target="_blank" >RIV/61989100:27240/18:10241747 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0952197618301404?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0952197618301404?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.engappai.2018.06.009" target="_blank" >10.1016/j.engappai.2018.06.009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An efficient approach for mining sequential patterns using multiple threads on very large databases
Popis výsledku v původním jazyce
Sequential pattern mining (SPM) plays an important role in data mining, with broad applications such as in financial markets, education, medicine, and prediction. Although there are many efficient algorithms for SPM, the mining time is still high, especially for mining sequential patterns from huge databases, which require the use of a parallel technique. In this paper, we propose a parallel approach named MCM-SPADE (Multiple threads CM-SPADE), for use on a multi-core processor system as a :multi-threading technique for SPM with very large database, to enhance the performance of the previous methods SPADE and CM-SPADE. The proposed algorithm uses the vertical data format and a data structure named CMAP (Co-occurrence MAP) for storing co-occurrence information. Based on the data structure CMAP, the proposed algorithm performs early pruning of the candidates to reduce the search space and it partitions the related tasks to each processor core by using the divide-and-conquer property. The proposed algorithm also uses dynamic scheduling to avoid task idling and achieve load balancing between processor cores. The experimental results show that MCM-SPADE attains good parallelization efficiency on various input databases.
Název v anglickém jazyce
An efficient approach for mining sequential patterns using multiple threads on very large databases
Popis výsledku anglicky
Sequential pattern mining (SPM) plays an important role in data mining, with broad applications such as in financial markets, education, medicine, and prediction. Although there are many efficient algorithms for SPM, the mining time is still high, especially for mining sequential patterns from huge databases, which require the use of a parallel technique. In this paper, we propose a parallel approach named MCM-SPADE (Multiple threads CM-SPADE), for use on a multi-core processor system as a :multi-threading technique for SPM with very large database, to enhance the performance of the previous methods SPADE and CM-SPADE. The proposed algorithm uses the vertical data format and a data structure named CMAP (Co-occurrence MAP) for storing co-occurrence information. Based on the data structure CMAP, the proposed algorithm performs early pruning of the candidates to reduce the search space and it partitions the related tasks to each processor core by using the divide-and-conquer property. The proposed algorithm also uses dynamic scheduling to avoid task idling and achieve load balancing between processor cores. The experimental results show that MCM-SPADE attains good parallelization efficiency on various input databases.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
ISSN
0952-1976
e-ISSN
—
Svazek periodika
74
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
242-251
Kód UT WoS článku
000442705600018
EID výsledku v databázi Scopus
2-s2.0-85049880245