Intelligent System for Power Load Forecasting in Off-grid Platform
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241748" target="_blank" >RIV/61989100:27240/18:10241748 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8396034" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8396034</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/EPE.2018.8396034" target="_blank" >10.1109/EPE.2018.8396034</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Intelligent System for Power Load Forecasting in Off-grid Platform
Popis výsledku v původním jazyce
Accurate and reliable load forecasting is a very important and required task conditioning the operation and management of electrical power generation systems. It is a key issue especially in planning and controlling the power grid system. The load forecasting process makes part of a smart control system. In off-grid platforms, smart control systems are needed to keep the consumed power equal to generated power as well as to maintain the power quality at standard levels of power quality parameters. Many mathematical models have been designed for load forecasting, including artificial neural network (ANN), decision tree (DT), support vector machine (SVM), fuzzy sets, etc. Still, the power load forecasting remains an open issue. In this article, we introduce an intelligent approach that predicts electrical load using data taken from an off-grid platform. The proposed approach builds on four models, namely K-means with ANN, K-means with DT, K-medoids with ANN, and K-medoids with DT. The article describes the design of these four forecasting models and compares them. The simulation results of the four models were evaluated and compared using mean absolute percentage error (MAPE) criteria. The best forecasting results were obtained using K-medoids clustering combined with ANN, where the MAPE was about 8%.
Název v anglickém jazyce
Intelligent System for Power Load Forecasting in Off-grid Platform
Popis výsledku anglicky
Accurate and reliable load forecasting is a very important and required task conditioning the operation and management of electrical power generation systems. It is a key issue especially in planning and controlling the power grid system. The load forecasting process makes part of a smart control system. In off-grid platforms, smart control systems are needed to keep the consumed power equal to generated power as well as to maintain the power quality at standard levels of power quality parameters. Many mathematical models have been designed for load forecasting, including artificial neural network (ANN), decision tree (DT), support vector machine (SVM), fuzzy sets, etc. Still, the power load forecasting remains an open issue. In this article, we introduce an intelligent approach that predicts electrical load using data taken from an off-grid platform. The proposed approach builds on four models, namely K-means with ANN, K-means with DT, K-medoids with ANN, and K-medoids with DT. The article describes the design of these four forecasting models and compares them. The simulation results of the four models were evaluated and compared using mean absolute percentage error (MAPE) criteria. The best forecasting results were obtained using K-medoids clustering combined with ANN, where the MAPE was about 8%.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2018 19th International Scientific Conference on Electric Power Engineering (EPE)
ISBN
978-1-5386-4612-0
ISSN
2376-5623
e-ISSN
neuvedeno
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Brno
Datum konání akce
16. 5. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000439649500086