An algorithm for Elliott Waves pattern detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241920" target="_blank" >RIV/61989100:27240/18:10241920 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/18:10241920
Výsledek na webu
<a href="https://content.iospress.com/articles/intelligent-decision-technologies/idt319" target="_blank" >https://content.iospress.com/articles/intelligent-decision-technologies/idt319</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/IDT-170319" target="_blank" >10.3233/IDT-170319</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An algorithm for Elliott Waves pattern detection
Popis výsledku v původním jazyce
The examination of the ElliottWave theory is the main motivation of this contribution. All of the fundamental features of an proper ElliottWave pattern (EW pattern) are reviewed and explained. Based on this knowledge, an algorithm for detection of these patterns is designed, developed and tested. Under several different algorithm settings, several EW pattern sets are obtained. They differ in amount of found EW patterns, quality and size. The following application of the developed detection algorithm was based on recognition of an incomplete EW patterns with aim of the prediction of the following progress of the time set. The Random Decision Forest and the Support Vector Machine are the machine learning algorithms employed for this task. The accuracy of trend prediction above 70% proves the relevancy of EW patterns on stock market data as well as the validity of the algorithm as a tool for detection of such patterns.
Název v anglickém jazyce
An algorithm for Elliott Waves pattern detection
Popis výsledku anglicky
The examination of the ElliottWave theory is the main motivation of this contribution. All of the fundamental features of an proper ElliottWave pattern (EW pattern) are reviewed and explained. Based on this knowledge, an algorithm for detection of these patterns is designed, developed and tested. Under several different algorithm settings, several EW pattern sets are obtained. They differ in amount of found EW patterns, quality and size. The following application of the developed detection algorithm was based on recognition of an incomplete EW patterns with aim of the prediction of the following progress of the time set. The Random Decision Forest and the Support Vector Machine are the machine learning algorithms employed for this task. The accuracy of trend prediction above 70% proves the relevancy of EW patterns on stock market data as well as the validity of the algorithm as a tool for detection of such patterns.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-06700S" target="_blank" >GA15-06700S: Nekonvenční řízení komplexních systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Intelligent Decision Technologies
ISSN
1872-4981
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
15-24
Kód UT WoS článku
000445796700003
EID výsledku v databázi Scopus
—