Reinforcement Learning inspired Deep Learned Compositional Model for Decision Making in Tracking
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10244478" target="_blank" >RIV/61989100:27240/18:10244478 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8718691" target="_blank" >https://ieeexplore.ieee.org/document/8718691</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICRCICN.2018.8718691" target="_blank" >10.1109/ICRCICN.2018.8718691</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reinforcement Learning inspired Deep Learned Compositional Model for Decision Making in Tracking
Popis výsledku v původním jazyce
We formulate a tracker which performs incessant decision making in order to track objects where the objects may undergo different challenges such as partial occlusions, moving camera, cluttered background etc. In the process, the agent must make a decision on whether to keep track of the object when it is occluded or has moved out of the frame temporarily based on its prediction from the previous location or to reinitialize the tracker based on the belief that the target has been lost. Instead of the heuristic methods we depend on reward and penalty based training that helps the agent reach an optimal solution via this partially observable Markov decision making (POMDP). Furthermore, we employ deeply learned compositional model to estimate human pose in order to better handle occlusion without needing human inputs. By learning compositionality of human bodies via deep neural network the agent can make better decision on presence of human in a frame or lack thereof under occlusion. We adapt skeleton based part representation and do away with the large spatial state requirement. This especially helps in cases where orientation of the target in focus is unorthodox. Finally we demonstrate that the deep reinforcement learning based training coupled with pose estimation capabilities allows us to train and tag multiple large video datasets much quicker than previous works
Název v anglickém jazyce
Reinforcement Learning inspired Deep Learned Compositional Model for Decision Making in Tracking
Popis výsledku anglicky
We formulate a tracker which performs incessant decision making in order to track objects where the objects may undergo different challenges such as partial occlusions, moving camera, cluttered background etc. In the process, the agent must make a decision on whether to keep track of the object when it is occluded or has moved out of the frame temporarily based on its prediction from the previous location or to reinitialize the tracker based on the belief that the target has been lost. Instead of the heuristic methods we depend on reward and penalty based training that helps the agent reach an optimal solution via this partially observable Markov decision making (POMDP). Furthermore, we employ deeply learned compositional model to estimate human pose in order to better handle occlusion without needing human inputs. By learning compositionality of human bodies via deep neural network the agent can make better decision on presence of human in a frame or lack thereof under occlusion. We adapt skeleton based part representation and do away with the large spatial state requirement. This especially helps in cases where orientation of the target in focus is unorthodox. Finally we demonstrate that the deep reinforcement learning based training coupled with pose estimation capabilities allows us to train and tag multiple large video datasets much quicker than previous works
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings - 2018 4th IEEE International Conference on Research in Computational Intelligence and Communication Networks, ICRCICN 2018
ISBN
978-1-5386-7638-7
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
158-163
Název nakladatele
IEEE
Místo vydání
Vienna
Místo konání akce
Kolkata
Datum konání akce
22. 11. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000474789200030