Recognition of Atrial Fibrilation Episodes in Heart Rate Variability Signals Using a Machine Learning Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10243212" target="_blank" >RIV/61989100:27240/19:10243212 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/abstract/document/8787048" target="_blank" >https://ieeexplore.ieee.org/abstract/document/8787048</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/MIXDES.2019.8787048" target="_blank" >10.23919/MIXDES.2019.8787048</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Recognition of Atrial Fibrilation Episodes in Heart Rate Variability Signals Using a Machine Learning Approach
Popis výsledku v původním jazyce
Atrial fibrillation (AF) is the most common heart arrhythmia. Asymptomatic (silent) AF may be recognized during long term monitoring of the heart rate (HR) variability. The HR variability features are widely used for detection of AF. Automated classification of heart beats into AF and non-AF presented in this paper was carried out with a help of the Lagrangian Support Vector Machine. The classifier input vector included five beat-To-beat interval measures, seven adult's HR variability parameters, and four features taken from the analysis of the fetal heart rate as being characterized by high sensitivity to changes in subsequent intervals. The performance of the improved AF detection method was examined using the MIT-BIH Atrial Fibrillation Database, which includes 25 ten-hour ECG recordings. Results obtained during the classifier testing phase showed the sensitivity 95.91%, specificity 92.59%, positive predictive value 90.56%, negative predictive value 96.83%, and classification accuracy 94.00%. (C) 2019 Department of Microelectronics and Computer Science, Lodz University of Technology.
Název v anglickém jazyce
Recognition of Atrial Fibrilation Episodes in Heart Rate Variability Signals Using a Machine Learning Approach
Popis výsledku anglicky
Atrial fibrillation (AF) is the most common heart arrhythmia. Asymptomatic (silent) AF may be recognized during long term monitoring of the heart rate (HR) variability. The HR variability features are widely used for detection of AF. Automated classification of heart beats into AF and non-AF presented in this paper was carried out with a help of the Lagrangian Support Vector Machine. The classifier input vector included five beat-To-beat interval measures, seven adult's HR variability parameters, and four features taken from the analysis of the fetal heart rate as being characterized by high sensitivity to changes in subsequent intervals. The performance of the improved AF detection method was examined using the MIT-BIH Atrial Fibrillation Database, which includes 25 ten-hour ECG recordings. Results obtained during the classifier testing phase showed the sensitivity 95.91%, specificity 92.59%, positive predictive value 90.56%, negative predictive value 96.83%, and classification accuracy 94.00%. (C) 2019 Department of Microelectronics and Computer Science, Lodz University of Technology.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 26th International Conference "Mixed Design of Integrated Circuits and Systems", MIXDES 2019
ISBN
978-83-63578-15-2
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
419-424
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Řešov
Datum konání akce
27. 6. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—