Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improved new modified Weibull distribution: A Bayes study using Hamiltonian Monte Carlo simulation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10243847" target="_blank" >RIV/61989100:27240/20:10243847 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.sagepub.com/doi/pdf/10.1177/1748006X19896740" target="_blank" >https://journals.sagepub.com/doi/pdf/10.1177/1748006X19896740</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1177/1748006X19896740" target="_blank" >10.1177/1748006X19896740</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improved new modified Weibull distribution: A Bayes study using Hamiltonian Monte Carlo simulation

  • Popis výsledku v původním jazyce

    The newly modified Weibull distribution defined in the literature is a model based on combining the Weibull and modified Weibull distributions. It has been demonstrated as the best model for fitting to the bathtub-shaped failure rate data sets. However, another new model based on combining the modified Weibull and Gompertz distributions has been demonstrated later to be even better than the first model. In this article, we have shown how to improve the former model into a better model, and more importantly, we have provided a full Bayesian analysis of the improved model. The Hamiltonian Monte Carlo and cross-entropy methods have been exploited to empower the traditional methods of statistical estimation. Bayes estimators have been obtained using Hamiltonian Monte Carlo for posterior simulations. Bayesian model checking has also been provided in order to check the validation of the model when fitting to real data sets. We have also provided the maximum likelihood estimators of the model parameters using the cross-entropy method to optimize the log-likelihood function. The results derived from the analysis of two well-known data sets show that the improved model is much better than its original form.

  • Název v anglickém jazyce

    Improved new modified Weibull distribution: A Bayes study using Hamiltonian Monte Carlo simulation

  • Popis výsledku anglicky

    The newly modified Weibull distribution defined in the literature is a model based on combining the Weibull and modified Weibull distributions. It has been demonstrated as the best model for fitting to the bathtub-shaped failure rate data sets. However, another new model based on combining the modified Weibull and Gompertz distributions has been demonstrated later to be even better than the first model. In this article, we have shown how to improve the former model into a better model, and more importantly, we have provided a full Bayesian analysis of the improved model. The Hamiltonian Monte Carlo and cross-entropy methods have been exploited to empower the traditional methods of statistical estimation. Bayes estimators have been obtained using Hamiltonian Monte Carlo for posterior simulations. Bayesian model checking has also been provided in order to check the validation of the model when fitting to real data sets. We have also provided the maximum likelihood estimators of the model parameters using the cross-entropy method to optimize the log-likelihood function. The results derived from the analysis of two well-known data sets show that the improved model is much better than its original form.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_049%2F0008425" target="_blank" >EF17_049/0008425: Platforma pro výzkum orientovaný na Průmysl 4.0 a robotiku v ostravské aglomeraci</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Risk and Reliability

  • ISSN

    1748-006X

  • e-ISSN

  • Svazek periodika

    234

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    16

  • Strana od-do

    496-511

  • Kód UT WoS článku

    000509441700001

  • EID výsledku v databázi Scopus

    2-s2.0-85078333595