Deep Learning Serves Voice Cloning: How Vulnerable Are Automatic Speaker Verification Systems to Spoofing Trials?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10244762" target="_blank" >RIV/61989100:27240/20:10244762 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/20:10244762
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8999436" target="_blank" >https://ieeexplore.ieee.org/document/8999436</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/MCOM.001.1900396" target="_blank" >10.1109/MCOM.001.1900396</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep Learning Serves Voice Cloning: How Vulnerable Are Automatic Speaker Verification Systems to Spoofing Trials?
Popis výsledku v původním jazyce
This article verifies the reliability of automatic speaker verification (ASV) systems on new synthesis methods based on deep neural networks. ASV systems are widely used and applied regarding secure and effective biometric authentication. On the other hand, the rapid deployment of ASV systems contributes to the increased attention of attackers with newer and more sophisticated spoofing methods. Until recently, speech synthesis of the reference speaker did not seriously compromise the latest ASV systems. This situation is changing with the deployment of deep neural networks into the synthesis process. Projects including WaveNet, Deep Voice, Voice Loop, and many others generate very natural and high-quality speech that may clone voice identity. We are slowly approaching an era where we will not be able to recognize a genuine voice from a synthesized one. Therefore, it is necessary to define the robustness of current ASV systems to new methods of voice cloning. In this article, well-known SVM and GMM as well as new CNN-based ASVs are applied and subjected to synthesized speech from Tacotron 2 with the WaveNet TTS system. The results of this work confirm our concerns regarding the reliability of ASV systems against synthesized speech.
Název v anglickém jazyce
Deep Learning Serves Voice Cloning: How Vulnerable Are Automatic Speaker Verification Systems to Spoofing Trials?
Popis výsledku anglicky
This article verifies the reliability of automatic speaker verification (ASV) systems on new synthesis methods based on deep neural networks. ASV systems are widely used and applied regarding secure and effective biometric authentication. On the other hand, the rapid deployment of ASV systems contributes to the increased attention of attackers with newer and more sophisticated spoofing methods. Until recently, speech synthesis of the reference speaker did not seriously compromise the latest ASV systems. This situation is changing with the deployment of deep neural networks into the synthesis process. Projects including WaveNet, Deep Voice, Voice Loop, and many others generate very natural and high-quality speech that may clone voice identity. We are slowly approaching an era where we will not be able to recognize a genuine voice from a synthesized one. Therefore, it is necessary to define the robustness of current ASV systems to new methods of voice cloning. In this article, well-known SVM and GMM as well as new CNN-based ASVs are applied and subjected to synthesized speech from Tacotron 2 with the WaveNet TTS system. The results of this work confirm our concerns regarding the reliability of ASV systems against synthesized speech.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018140" target="_blank" >LM2018140: e-Infrastruktura CZ</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE COMMUNICATIONS MAGAZINE
ISSN
0163-6804
e-ISSN
—
Svazek periodika
58
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
100-105
Kód UT WoS článku
000521968600018
EID výsledku v databázi Scopus
—