Quantitative Analysis and Objective Comparison of Clustering Algorithms for Medical Image Segmentation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10244962" target="_blank" >RIV/61989100:27240/20:10244962 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-42058-1_10" target="_blank" >http://dx.doi.org/10.1007/978-3-030-42058-1_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-42058-1_10" target="_blank" >10.1007/978-3-030-42058-1_10</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantitative Analysis and Objective Comparison of Clustering Algorithms for Medical Image Segmentation
Popis výsledku v původním jazyce
The paper describes the implementation of non-hierarchical methods k-means and fuzzy c-means on nosily images from different medical modalities as computed tomography and magnetic resonance. Modern devices are created on the basis of advanced technology, both during the actual acquisition of the image and subsequently during its processing. The problem is caused by the unexpected disturbance of the image by parasitic noise, which may already occur in the electronics of the device or in dependence on the phenomena caused by the external environment. The testing was carried out on 3 datasets of medical images and the evaluation per individual images was determined based on the correlation factor and the mean quadratic error. The result is evaluation of non-hierarchical clustering techniques for the creation of mathematical models of tissue depending on the noise intensity. (C) 2020, Springer Nature Switzerland AG.
Název v anglickém jazyce
Quantitative Analysis and Objective Comparison of Clustering Algorithms for Medical Image Segmentation
Popis výsledku anglicky
The paper describes the implementation of non-hierarchical methods k-means and fuzzy c-means on nosily images from different medical modalities as computed tomography and magnetic resonance. Modern devices are created on the basis of advanced technology, both during the actual acquisition of the image and subsequently during its processing. The problem is caused by the unexpected disturbance of the image by parasitic noise, which may already occur in the electronics of the device or in dependence on the phenomena caused by the external environment. The testing was carried out on 3 datasets of medical images and the evaluation per individual images was determined based on the correlation factor and the mean quadratic error. The result is evaluation of non-hierarchical clustering techniques for the creation of mathematical models of tissue depending on the noise intensity. (C) 2020, Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 12034
ISBN
978-3-030-42057-4
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
12
Strana od-do
114-125
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Phuket
Datum konání akce
23. 3. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—