A nature-inspired biomarker for mental concentration using a single-channel EEG
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10245016" target="_blank" >RIV/61989100:27240/20:10245016 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs00521-019-04574-2" target="_blank" >https://link.springer.com/article/10.1007%2Fs00521-019-04574-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00521-019-04574-2" target="_blank" >10.1007/s00521-019-04574-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A nature-inspired biomarker for mental concentration using a single-channel EEG
Popis výsledku v původním jazyce
We developed a system for measuring the attentional process during the performance of specific activities. The proposed biomarker device is able to estimate the mental concentration using a single-channel EEG. The system captures the EEG signal and several brain waves located in the left orbitofrontal brain region. Furthermore, we extended the input features of the system applying spectrum analysis. We applied two well-known evolutionary algorithms for selecting the best combination of input features: simulated annealing and geometric particle swarm optimization. Besides, we solved the binary classification problem (concentration vs. relaxation) using support vector machines and neural networks. Support vector machines are among the most common instruments for solving binary classification problems. On the other hand, we selected to study a family of neural networks named echo state networks, because the model is ideal for embedded systems and has shown good accuracy in real-world applications. The training and execution are fast, robust, and reliable. The developed system is autonomous, portable, reliable, non-invasive and has a low economic cost. Besides, it can be easily adjusted for each person and for each problem. (C) 2019, Springer-Verlag London Ltd., part of Springer Nature.
Název v anglickém jazyce
A nature-inspired biomarker for mental concentration using a single-channel EEG
Popis výsledku anglicky
We developed a system for measuring the attentional process during the performance of specific activities. The proposed biomarker device is able to estimate the mental concentration using a single-channel EEG. The system captures the EEG signal and several brain waves located in the left orbitofrontal brain region. Furthermore, we extended the input features of the system applying spectrum analysis. We applied two well-known evolutionary algorithms for selecting the best combination of input features: simulated annealing and geometric particle swarm optimization. Besides, we solved the binary classification problem (concentration vs. relaxation) using support vector machines and neural networks. Support vector machines are among the most common instruments for solving binary classification problems. On the other hand, we selected to study a family of neural networks named echo state networks, because the model is ideal for embedded systems and has shown good accuracy in real-world applications. The training and execution are fast, robust, and reliable. The developed system is autonomous, portable, reliable, non-invasive and has a low economic cost. Besides, it can be easily adjusted for each person and for each problem. (C) 2019, Springer-Verlag London Ltd., part of Springer Nature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Computing and Applications
ISSN
0941-0643
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
7941-7956
Kód UT WoS článku
000493504900001
EID výsledku v databázi Scopus
2-s2.0-85074711492