Complete classification of trapping coins for quantum walks on the two-dimensional square lattice
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10245747" target="_blank" >RIV/61989100:27240/20:10245747 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/20:00341853
Výsledek na webu
<a href="https://journals.aps.org/pra/abstract/10.1103/PhysRevA.102.012207" target="_blank" >https://journals.aps.org/pra/abstract/10.1103/PhysRevA.102.012207</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.102.012207" target="_blank" >10.1103/PhysRevA.102.012207</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Complete classification of trapping coins for quantum walks on the two-dimensional square lattice
Popis výsledku v původním jazyce
One of the unique features of discrete-time quantum walks is called trapping, meaning the inability of the quantum walker to completely escape from its initial position, although the system is translationally invariant. The effect is dependent on the dimension and the explicit form of the local coin. A four-state discrete-time quantum walk on a square lattice is defined by its unitary coin operator, acting on the four-dimensional coin Hilbert space. The well-known example of the Grover coin leads to a partial trapping, i.e., there exists some escaping initial state for which the probability of staying at the initial position vanishes. On the other hand, some other coins are known to exhibit strong trapping, where such an escaping state does not exist. We present a systematic study of coins leading to trapping, explicitly construct all such coins for discrete-time quantum walks on the two-dimensional square lattice, and classify them according to the structure of the operator and the manifestation of the trapping effect. We distinguish three types of trapping coins exhibiting distinct dynamical properties, as exemplified by the existence or nonexistence of the escaping state and the area covered by the spreading wave packet.
Název v anglickém jazyce
Complete classification of trapping coins for quantum walks on the two-dimensional square lattice
Popis výsledku anglicky
One of the unique features of discrete-time quantum walks is called trapping, meaning the inability of the quantum walker to completely escape from its initial position, although the system is translationally invariant. The effect is dependent on the dimension and the explicit form of the local coin. A four-state discrete-time quantum walk on a square lattice is defined by its unitary coin operator, acting on the four-dimensional coin Hilbert space. The well-known example of the Grover coin leads to a partial trapping, i.e., there exists some escaping initial state for which the probability of staying at the initial position vanishes. On the other hand, some other coins are known to exhibit strong trapping, where such an escaping state does not exist. We present a systematic study of coins leading to trapping, explicitly construct all such coins for discrete-time quantum walks on the two-dimensional square lattice, and classify them according to the structure of the operator and the manifestation of the trapping effect. We distinguish three types of trapping coins exhibiting distinct dynamical properties, as exemplified by the existence or nonexistence of the escaping state and the area covered by the spreading wave packet.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review A
ISSN
2469-9926
e-ISSN
—
Svazek periodika
102
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
"012207(1)"-"012207(14)"
Kód UT WoS článku
000564912400006
EID výsledku v databázi Scopus
—