Intelligent controller design by the artificial intelligence methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10246451" target="_blank" >RIV/61989100:27240/20:10246451 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1424-8220/20/16/4454" target="_blank" >https://www.mdpi.com/1424-8220/20/16/4454</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s20164454" target="_blank" >10.3390/s20164454</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Intelligent controller design by the artificial intelligence methods
Popis výsledku v původním jazyce
With the rapid growth of sensor networks and the enormous, fast-growing volumes of data collected from these sensors, there is a question relating to the way it will be used, and not only collected and analyzed. The data from these sensors are traditionally used for controlling and influencing the states and processes. Standard controllers are available and successfully implemented. However, with the data-driven era we are facing nowadays, there is an opportunity to use controllers, which can include much information, elusive for common controllers. Our goal is to propose a design of an intelligent controller-a conventional controller, but with a non-conventional method of designing its parameters using approaches of artificial intelligence combining fuzzy and genetics methods. Intelligent adaptation of parameters of the control system is performed using data from the sensors measured in the controlled process. All parts designed are based on non-conventional methods and are verified by simulations. The identification of the system's parameters is based on parameter optimization by means of its difference equation using genetic algorithms. The continuous monitoring of the quality control process and the design of the controller parameters are conducted using a fuzzy expert system of the Mamdani type, or the Takagi-Sugeno type. The concept of the intelligent control system is open and easily expandable. (C) 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Název v anglickém jazyce
Intelligent controller design by the artificial intelligence methods
Popis výsledku anglicky
With the rapid growth of sensor networks and the enormous, fast-growing volumes of data collected from these sensors, there is a question relating to the way it will be used, and not only collected and analyzed. The data from these sensors are traditionally used for controlling and influencing the states and processes. Standard controllers are available and successfully implemented. However, with the data-driven era we are facing nowadays, there is an opportunity to use controllers, which can include much information, elusive for common controllers. Our goal is to propose a design of an intelligent controller-a conventional controller, but with a non-conventional method of designing its parameters using approaches of artificial intelligence combining fuzzy and genetics methods. Intelligent adaptation of parameters of the control system is performed using data from the sensors measured in the controlled process. All parts designed are based on non-conventional methods and are verified by simulations. The identification of the system's parameters is based on parameter optimization by means of its difference equation using genetic algorithms. The continuous monitoring of the quality control process and the design of the controller parameters are conducted using a fuzzy expert system of the Mamdani type, or the Takagi-Sugeno type. The concept of the intelligent control system is open and easily expandable. (C) 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors
ISSN
1424-3210
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
27
Strana od-do
1-27
Kód UT WoS článku
000567298300001
EID výsledku v databázi Scopus
2-s2.0-85089341975