Intelligent Systems for Power Load Forecasting: A Study Review
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10246975" target="_blank" >RIV/61989100:27240/20:10246975 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27730/20:10246975
Výsledek na webu
<a href="https://www.mdpi.com/1996-1073/13/22/6105" target="_blank" >https://www.mdpi.com/1996-1073/13/22/6105</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/en13226105" target="_blank" >10.3390/en13226105</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Intelligent Systems for Power Load Forecasting: A Study Review
Popis výsledku v původním jazyce
The study of power load forecasting is gaining greater significance nowadays, particularly with the use and integration of renewable power sources and external power stations. Power forecasting is an important task in the planning, control, and operation of utility power systems. In addition, load forecasting (LF) aims to estimate the power or energy needed to meet the required power or energy to supply the specific load. In this article, we introduce, review and compare different power load forecasting techniques. Our goal is to help in the process of explaining the problem of power load forecasting via brief descriptions of the proposed methods applied in the last decade. The study reviews previous research that deals with the design of intelligent systems for power forecasting using various methods. The methods are organized into five groups-Artificial Neural Network (ANN), Support Vector Regression, Decision Tree (DT), Linear Regression (LR), and Fuzzy Sets (FS). This way, the review provides a clear concept of power load forecasting for the purposes of future research and study.
Název v anglickém jazyce
Intelligent Systems for Power Load Forecasting: A Study Review
Popis výsledku anglicky
The study of power load forecasting is gaining greater significance nowadays, particularly with the use and integration of renewable power sources and external power stations. Power forecasting is an important task in the planning, control, and operation of utility power systems. In addition, load forecasting (LF) aims to estimate the power or energy needed to meet the required power or energy to supply the specific load. In this article, we introduce, review and compare different power load forecasting techniques. Our goal is to help in the process of explaining the problem of power load forecasting via brief descriptions of the proposed methods applied in the last decade. The study reviews previous research that deals with the design of intelligent systems for power forecasting using various methods. The methods are organized into five groups-Artificial Neural Network (ANN), Support Vector Regression, Decision Tree (DT), Linear Regression (LR), and Fuzzy Sets (FS). This way, the review provides a clear concept of power load forecasting for the purposes of future research and study.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energies
ISSN
1996-1073
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
22
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
000594093900001
EID výsledku v databázi Scopus
—