Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Intelligent Systems for Power Load Forecasting: A Study Review

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10246975" target="_blank" >RIV/61989100:27240/20:10246975 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27730/20:10246975

  • Výsledek na webu

    <a href="https://www.mdpi.com/1996-1073/13/22/6105" target="_blank" >https://www.mdpi.com/1996-1073/13/22/6105</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/en13226105" target="_blank" >10.3390/en13226105</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Intelligent Systems for Power Load Forecasting: A Study Review

  • Popis výsledku v původním jazyce

    The study of power load forecasting is gaining greater significance nowadays, particularly with the use and integration of renewable power sources and external power stations. Power forecasting is an important task in the planning, control, and operation of utility power systems. In addition, load forecasting (LF) aims to estimate the power or energy needed to meet the required power or energy to supply the specific load. In this article, we introduce, review and compare different power load forecasting techniques. Our goal is to help in the process of explaining the problem of power load forecasting via brief descriptions of the proposed methods applied in the last decade. The study reviews previous research that deals with the design of intelligent systems for power forecasting using various methods. The methods are organized into five groups-Artificial Neural Network (ANN), Support Vector Regression, Decision Tree (DT), Linear Regression (LR), and Fuzzy Sets (FS). This way, the review provides a clear concept of power load forecasting for the purposes of future research and study.

  • Název v anglickém jazyce

    Intelligent Systems for Power Load Forecasting: A Study Review

  • Popis výsledku anglicky

    The study of power load forecasting is gaining greater significance nowadays, particularly with the use and integration of renewable power sources and external power stations. Power forecasting is an important task in the planning, control, and operation of utility power systems. In addition, load forecasting (LF) aims to estimate the power or energy needed to meet the required power or energy to supply the specific load. In this article, we introduce, review and compare different power load forecasting techniques. Our goal is to help in the process of explaining the problem of power load forecasting via brief descriptions of the proposed methods applied in the last decade. The study reviews previous research that deals with the design of intelligent systems for power forecasting using various methods. The methods are organized into five groups-Artificial Neural Network (ANN), Support Vector Regression, Decision Tree (DT), Linear Regression (LR), and Fuzzy Sets (FS). This way, the review provides a clear concept of power load forecasting for the purposes of future research and study.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Energies

  • ISSN

    1996-1073

  • e-ISSN

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    22

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    12

  • Strana od-do

  • Kód UT WoS článku

    000594093900001

  • EID výsledku v databázi Scopus