Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Anchor Link Prediction in Online Social Network Using Graph Embedding and Binary Classification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10246987" target="_blank" >RIV/61989100:27240/20:10246987 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-63007-2_18" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-63007-2_18</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-63007-2_18" target="_blank" >10.1007/978-3-030-63007-2_18</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Anchor Link Prediction in Online Social Network Using Graph Embedding and Binary Classification

  • Popis výsledku v původním jazyce

    With the widespread popularity as well as the variety of different online social networks. Today, each user can join many social networks at the same time for many different purposes. They can join Facebook to share and update status, join Instagram to share photos, join LinkedIn to share in work, etc. As the scale and number of online social networks grows, social network analysis has become a widespread problem in many scientific disciplines. One of the emerging topics in social network analysis is anchor link prediction problem which identifies the same user across different networks. In this paper, we propose an algorithm to predict the missing anchor links between users across source and target network. Our algorithm represents the vertices and the edges in source and target network as the represenation vectors, we then apply the binary classification algorithms to predict the matching score of all pairs of vertices between the source and target network. The experimental results show that our algorithm performs better traditional anchor link prediction algorithms. (C) 2020, Springer Nature Switzerland AG.

  • Název v anglickém jazyce

    Anchor Link Prediction in Online Social Network Using Graph Embedding and Binary Classification

  • Popis výsledku anglicky

    With the widespread popularity as well as the variety of different online social networks. Today, each user can join many social networks at the same time for many different purposes. They can join Facebook to share and update status, join Instagram to share photos, join LinkedIn to share in work, etc. As the scale and number of online social networks grows, social network analysis has become a widespread problem in many scientific disciplines. One of the emerging topics in social network analysis is anchor link prediction problem which identifies the same user across different networks. In this paper, we propose an algorithm to predict the missing anchor links between users across source and target network. Our algorithm represents the vertices and the edges in source and target network as the represenation vectors, we then apply the binary classification algorithms to predict the matching score of all pairs of vertices between the source and target network. The experimental results show that our algorithm performs better traditional anchor link prediction algorithms. (C) 2020, Springer Nature Switzerland AG.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 12496

  • ISBN

    978-3-030-63006-5

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    12

  • Strana od-do

    229-240

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Danang

  • Datum konání akce

    30. 11. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku