Anchor Link Prediction in Online Social Network Using Graph Embedding and Binary Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10246987" target="_blank" >RIV/61989100:27240/20:10246987 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-63007-2_18" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-63007-2_18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-63007-2_18" target="_blank" >10.1007/978-3-030-63007-2_18</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Anchor Link Prediction in Online Social Network Using Graph Embedding and Binary Classification
Popis výsledku v původním jazyce
With the widespread popularity as well as the variety of different online social networks. Today, each user can join many social networks at the same time for many different purposes. They can join Facebook to share and update status, join Instagram to share photos, join LinkedIn to share in work, etc. As the scale and number of online social networks grows, social network analysis has become a widespread problem in many scientific disciplines. One of the emerging topics in social network analysis is anchor link prediction problem which identifies the same user across different networks. In this paper, we propose an algorithm to predict the missing anchor links between users across source and target network. Our algorithm represents the vertices and the edges in source and target network as the represenation vectors, we then apply the binary classification algorithms to predict the matching score of all pairs of vertices between the source and target network. The experimental results show that our algorithm performs better traditional anchor link prediction algorithms. (C) 2020, Springer Nature Switzerland AG.
Název v anglickém jazyce
Anchor Link Prediction in Online Social Network Using Graph Embedding and Binary Classification
Popis výsledku anglicky
With the widespread popularity as well as the variety of different online social networks. Today, each user can join many social networks at the same time for many different purposes. They can join Facebook to share and update status, join Instagram to share photos, join LinkedIn to share in work, etc. As the scale and number of online social networks grows, social network analysis has become a widespread problem in many scientific disciplines. One of the emerging topics in social network analysis is anchor link prediction problem which identifies the same user across different networks. In this paper, we propose an algorithm to predict the missing anchor links between users across source and target network. Our algorithm represents the vertices and the edges in source and target network as the represenation vectors, we then apply the binary classification algorithms to predict the matching score of all pairs of vertices between the source and target network. The experimental results show that our algorithm performs better traditional anchor link prediction algorithms. (C) 2020, Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 12496
ISBN
978-3-030-63006-5
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
12
Strana od-do
229-240
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Danang
Datum konání akce
30. 11. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—