Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Contextual identification of windows malware through semantic interpretation of API call sequence

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10246992" target="_blank" >RIV/61989100:27240/20:10246992 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2076-3417/10/21/7673" target="_blank" >https://www.mdpi.com/2076-3417/10/21/7673</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app10217673" target="_blank" >10.3390/app10217673</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Contextual identification of windows malware through semantic interpretation of API call sequence

  • Popis výsledku v původním jazyce

    The proper interpretation of the malware API call sequence plays a crucial role in identifying its malicious intent. Moreover, there is a necessity to characterize smart malware mimicry activities that resemble goodware programs. Those types of malware imply further challenges in recognizing their malicious activities. In this paper, we propose a standard and straightforward contextual behavioral models that characterize Windows malware and goodware. We relied on the word embedding to realize the contextual association that may occur between API functions in malware sequences. Our empirical results proved that there is a considerable distinction between malware and goodware call sequences. Based on that distinction, we propose a new method to detect malware that relies on the Markov chain. We also propose a heuristic method that identifies malware&apos;s mimicry activities by tracking the likelihood behavior of a given API call sequence. Experimental results showed that our proposed model outperforms other peer models that rely on API call sequences. Our model returns an average malware detection accuracy of 0.990, with a false positive rate of 0.010. Regarding malware mimicry, our model shows an average noteworthy accuracy of 0.993 in detecting false positives. (C) 2020 by the authors. Licensee MDPI, Basel, Switzerland.

  • Název v anglickém jazyce

    Contextual identification of windows malware through semantic interpretation of API call sequence

  • Popis výsledku anglicky

    The proper interpretation of the malware API call sequence plays a crucial role in identifying its malicious intent. Moreover, there is a necessity to characterize smart malware mimicry activities that resemble goodware programs. Those types of malware imply further challenges in recognizing their malicious activities. In this paper, we propose a standard and straightforward contextual behavioral models that characterize Windows malware and goodware. We relied on the word embedding to realize the contextual association that may occur between API functions in malware sequences. Our empirical results proved that there is a considerable distinction between malware and goodware call sequences. Based on that distinction, we propose a new method to detect malware that relies on the Markov chain. We also propose a heuristic method that identifies malware&apos;s mimicry activities by tracking the likelihood behavior of a given API call sequence. Experimental results showed that our proposed model outperforms other peer models that rely on API call sequences. Our model returns an average malware detection accuracy of 0.990, with a false positive rate of 0.010. Regarding malware mimicry, our model shows an average noteworthy accuracy of 0.993 in detecting false positives. (C) 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Sciences

  • ISSN

    2076-3417

  • e-ISSN

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    21

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    15

  • Strana od-do

    1-15

  • Kód UT WoS článku

    000589006900001

  • EID výsledku v databázi Scopus

    2-s2.0-85096004091