Optimal Control Problem Solution with Phase Constraints for Group of Robots by Pontryagin Maximum Principle and Evolutionary Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10247256" target="_blank" >RIV/61989100:27240/20:10247256 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/8/12/2105/htm" target="_blank" >https://www.mdpi.com/2227-7390/8/12/2105/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8122105" target="_blank" >10.3390/math8122105</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimal Control Problem Solution with Phase Constraints for Group of Robots by Pontryagin Maximum Principle and Evolutionary Algorithm
Popis výsledku v původním jazyce
A numerical method based on the Pontryagin maximum principle for solving an optimal control problem with static and dynamic phase constraints for a group of objects is considered. Dynamic phase constraints are introduced to avoid collisions between objects. Phase constraints are included in the functional in the form of smooth penalty functions. Additional parameters for special control modes and the terminal time of the control process were introduced. The search for additional parameters and the initial conditions for the conjugate variables was performed by the modified self-organizing migrating algorithm. An example of using this approach to solve the optimal control problem for the oncoming movement of two mobile robots is given. Simulation and comparison with direct approach showed that the problem is multimodal, and it approves application of the evolutionary algorithm for its solution.
Název v anglickém jazyce
Optimal Control Problem Solution with Phase Constraints for Group of Robots by Pontryagin Maximum Principle and Evolutionary Algorithm
Popis výsledku anglicky
A numerical method based on the Pontryagin maximum principle for solving an optimal control problem with static and dynamic phase constraints for a group of objects is considered. Dynamic phase constraints are introduced to avoid collisions between objects. Phase constraints are included in the functional in the form of smooth penalty functions. Additional parameters for special control modes and the terminal time of the control process were introduced. The search for additional parameters and the initial conditions for the conjugate variables was performed by the modified self-organizing migrating algorithm. An example of using this approach to solve the optimal control problem for the oncoming movement of two mobile robots is given. Simulation and comparison with direct approach showed that the problem is multimodal, and it approves application of the evolutionary algorithm for its solution.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
000602180800001
EID výsledku v databázi Scopus
2-s2.0-85097293781