An In-depth Analysis of OCR Errors for Unconstrained Vietnamese Handwriting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10247263" target="_blank" >RIV/61989100:27240/20:10247263 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/20:10247263
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007%2F978-3-030-63924-2_26.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2F978-3-030-63924-2_26.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-63924-2_26" target="_blank" >10.1007/978-3-030-63924-2_26</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An In-depth Analysis of OCR Errors for Unconstrained Vietnamese Handwriting
Popis výsledku v původním jazyce
OCR post-processing is an essential step to improve the accuracy of OCR-generated texts by detecting and correcting OCR errors. In this paper, the OCR texts are resulted from an OCR engine which is based on the attention-based encoder-decoder model for unconstrained Vietnamese handwriting. We identify various kinds of Vietnamese OCR errors and their possible causes. Detailed statistics of Vietnamese OCR errors are provided and analyzed at both character level and syllable level, using typical OCR error characteristics such as error rate, error mapping/edit, frequency and error length. Furthermore, the statistical analyses are done on training and test sets of a benchmark database to infer whether the test set is the appropriate representative of the training set regarding the OCR error characteristics. We also discuss the choice of designing OCR post-processing approaches at character level or at syllable level relying on provided statistics of studied datasets. (C) 2020, Springer Nature Switzerland AG.
Název v anglickém jazyce
An In-depth Analysis of OCR Errors for Unconstrained Vietnamese Handwriting
Popis výsledku anglicky
OCR post-processing is an essential step to improve the accuracy of OCR-generated texts by detecting and correcting OCR errors. In this paper, the OCR texts are resulted from an OCR engine which is based on the attention-based encoder-decoder model for unconstrained Vietnamese handwriting. We identify various kinds of Vietnamese OCR errors and their possible causes. Detailed statistics of Vietnamese OCR errors are provided and analyzed at both character level and syllable level, using typical OCR error characteristics such as error rate, error mapping/edit, frequency and error length. Furthermore, the statistical analyses are done on training and test sets of a benchmark database to infer whether the test set is the appropriate representative of the training set regarding the OCR error characteristics. We also discuss the choice of designing OCR post-processing approaches at character level or at syllable level relying on provided statistics of studied datasets. (C) 2020, Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 12466
ISBN
978-3-030-63923-5
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
14
Strana od-do
448-461
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Quy Nhon
Datum konání akce
25. 11. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—