Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Spectra of Orders for k-Regular Graphs of Girth g

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10247654" target="_blank" >RIV/61989100:27240/21:10247654 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.dmgt.uz.zgora.pl/publish/bbl_view_pdf.php?ID=64196" target="_blank" >https://www.dmgt.uz.zgora.pl/publish/bbl_view_pdf.php?ID=64196</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.7151/dmgt.2233" target="_blank" >10.7151/dmgt.2233</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Spectra of Orders for k-Regular Graphs of Girth g

  • Popis výsledku v původním jazyce

    A (k, g)-graph is a k-regular graph of girth g. Given k &gt;= 2 and g &gt;= 3, infinitely many (k, g)-graphs of infinitely many orders are known to exist. Our goal, for given k and g, is the classification of all orders n for which a (k, g)-graph of order n exists; we choose to call the set of all such orders the spectrum of orders of (k, g)-graphs. The smallest of these orders (the first element in the spectrum) is the order of a (k, g)-cage; the (k, g)-graph of the smallest possible order. The exact value of this order is unknown for the majority of parameters (k, g). We determine the spectra of orders for (2, g), g &gt;= 3, (k, 3), k &gt;= 2, and (3, 5)-graphs, as well as the spectra of orders of some families of (k, 4)-graphs. In addition, we present methods for obtaining (k, g)-graphs that are larger then the smallest known (k, g)-graphs, but are smaller than (k, g)-graphs obtained by Sauer. Our constructions start from (k, g)-graphs that satisfy specific conditions derived in this paper and result in graphs of orders larger than the original graphs by one or two vertices. We present theorems describing ways to obtain &apos;starter graphs&apos; whose orders fall in the gap between the well-known Moore bound and the constructive bound derived by Sauer and are the first members of an infinite sequence of graphs whose orders cover all admissible orders larger than those of the &apos;starter graphs&apos;.

  • Název v anglickém jazyce

    Spectra of Orders for k-Regular Graphs of Girth g

  • Popis výsledku anglicky

    A (k, g)-graph is a k-regular graph of girth g. Given k &gt;= 2 and g &gt;= 3, infinitely many (k, g)-graphs of infinitely many orders are known to exist. Our goal, for given k and g, is the classification of all orders n for which a (k, g)-graph of order n exists; we choose to call the set of all such orders the spectrum of orders of (k, g)-graphs. The smallest of these orders (the first element in the spectrum) is the order of a (k, g)-cage; the (k, g)-graph of the smallest possible order. The exact value of this order is unknown for the majority of parameters (k, g). We determine the spectra of orders for (2, g), g &gt;= 3, (k, 3), k &gt;= 2, and (3, 5)-graphs, as well as the spectra of orders of some families of (k, 4)-graphs. In addition, we present methods for obtaining (k, g)-graphs that are larger then the smallest known (k, g)-graphs, but are smaller than (k, g)-graphs obtained by Sauer. Our constructions start from (k, g)-graphs that satisfy specific conditions derived in this paper and result in graphs of orders larger than the original graphs by one or two vertices. We present theorems describing ways to obtain &apos;starter graphs&apos; whose orders fall in the gap between the well-known Moore bound and the constructive bound derived by Sauer and are the first members of an infinite sequence of graphs whose orders cover all admissible orders larger than those of the &apos;starter graphs&apos;.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Discussiones Mathematicae - Graph Theory

  • ISSN

    1234-3099

  • e-ISSN

  • Svazek periodika

    41

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    PL - Polská republika

  • Počet stran výsledku

    11

  • Strana od-do

    "1115–1125"

  • Kód UT WoS článku

    000667233200016

  • EID výsledku v databázi Scopus

    2-s2.0-85079613491