Spectra of Orders for k-Regular Graphs of Girth g
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10247654" target="_blank" >RIV/61989100:27240/21:10247654 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.dmgt.uz.zgora.pl/publish/bbl_view_pdf.php?ID=64196" target="_blank" >https://www.dmgt.uz.zgora.pl/publish/bbl_view_pdf.php?ID=64196</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7151/dmgt.2233" target="_blank" >10.7151/dmgt.2233</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spectra of Orders for k-Regular Graphs of Girth g
Popis výsledku v původním jazyce
A (k, g)-graph is a k-regular graph of girth g. Given k >= 2 and g >= 3, infinitely many (k, g)-graphs of infinitely many orders are known to exist. Our goal, for given k and g, is the classification of all orders n for which a (k, g)-graph of order n exists; we choose to call the set of all such orders the spectrum of orders of (k, g)-graphs. The smallest of these orders (the first element in the spectrum) is the order of a (k, g)-cage; the (k, g)-graph of the smallest possible order. The exact value of this order is unknown for the majority of parameters (k, g). We determine the spectra of orders for (2, g), g >= 3, (k, 3), k >= 2, and (3, 5)-graphs, as well as the spectra of orders of some families of (k, 4)-graphs. In addition, we present methods for obtaining (k, g)-graphs that are larger then the smallest known (k, g)-graphs, but are smaller than (k, g)-graphs obtained by Sauer. Our constructions start from (k, g)-graphs that satisfy specific conditions derived in this paper and result in graphs of orders larger than the original graphs by one or two vertices. We present theorems describing ways to obtain 'starter graphs' whose orders fall in the gap between the well-known Moore bound and the constructive bound derived by Sauer and are the first members of an infinite sequence of graphs whose orders cover all admissible orders larger than those of the 'starter graphs'.
Název v anglickém jazyce
Spectra of Orders for k-Regular Graphs of Girth g
Popis výsledku anglicky
A (k, g)-graph is a k-regular graph of girth g. Given k >= 2 and g >= 3, infinitely many (k, g)-graphs of infinitely many orders are known to exist. Our goal, for given k and g, is the classification of all orders n for which a (k, g)-graph of order n exists; we choose to call the set of all such orders the spectrum of orders of (k, g)-graphs. The smallest of these orders (the first element in the spectrum) is the order of a (k, g)-cage; the (k, g)-graph of the smallest possible order. The exact value of this order is unknown for the majority of parameters (k, g). We determine the spectra of orders for (2, g), g >= 3, (k, 3), k >= 2, and (3, 5)-graphs, as well as the spectra of orders of some families of (k, 4)-graphs. In addition, we present methods for obtaining (k, g)-graphs that are larger then the smallest known (k, g)-graphs, but are smaller than (k, g)-graphs obtained by Sauer. Our constructions start from (k, g)-graphs that satisfy specific conditions derived in this paper and result in graphs of orders larger than the original graphs by one or two vertices. We present theorems describing ways to obtain 'starter graphs' whose orders fall in the gap between the well-known Moore bound and the constructive bound derived by Sauer and are the first members of an infinite sequence of graphs whose orders cover all admissible orders larger than those of the 'starter graphs'.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discussiones Mathematicae - Graph Theory
ISSN
1234-3099
e-ISSN
—
Svazek periodika
41
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
11
Strana od-do
"1115–1125"
Kód UT WoS článku
000667233200016
EID výsledku v databázi Scopus
2-s2.0-85079613491