COVID-19 anomaly detection and classification method based on supervised machine learning of chest X-ray images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10249300" target="_blank" >RIV/61989100:27240/21:10249300 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85120483972&origin=resultslist&sort=plf-f&src=s&st1=Nedoma%2cJ.&sid=f446027e94f07f944af015edb4136c3a&sot=b&sdt=b&sl=23&s=AUTHOR-NAME%28Nedoma%2c+J.%29&relpos=6&citeCnt=1&searchTerm=&featureToggles=FEATURE_NEW_DOC_DETAILS_EXPORT:1" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85120483972&origin=resultslist&sort=plf-f&src=s&st1=Nedoma%2cJ.&sid=f446027e94f07f944af015edb4136c3a&sot=b&sdt=b&sl=23&s=AUTHOR-NAME%28Nedoma%2c+J.%29&relpos=6&citeCnt=1&searchTerm=&featureToggles=FEATURE_NEW_DOC_DETAILS_EXPORT:1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.rinp.2021.105045" target="_blank" >10.1016/j.rinp.2021.105045</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
COVID-19 anomaly detection and classification method based on supervised machine learning of chest X-ray images
Popis výsledku v původním jazyce
The term COVID-19 is an abbreviation of Coronavirus 2019, which is considered a global pandemic that threatens the lives of millions of people. Early detection of the disease offers ample opportunity of recovery and prevention of spreading. This paper proposes a method for classification and early detection of COVID-19 through image processing using X-ray images. A set of procedures are applied, including preprocessing (image noise removal, image thresholding, and morphological operation), Region of Interest (ROI) detection and segmentation, feature extraction, (Local binary pattern (LBP), Histogram of Gradient (HOG), and Haralick texture features) and classification (K-Nearest Neighbor (KNN) and Support Vector Machine (SVM)). The combinations of the feature extraction operators and classifiers results in six models, namely LBP-KNN, HOG-KNN, Haralick-KNN, LBP-SVM, HOG-SVM, and Haralick-SVM. The six models are tested based on test samples of 5,000 images with the percentage of training of 5-folds cross-validation. The evaluation results show high diagnosis accuracy from 89.2% up to 98.66%. The LBP-KNN model outperforms the other models in which it achieves an average accuracy of 98.66%, a sensitivity of 97.76%, specificity of 100%, and precision of 100%. The proposed method for early detection and classification of COVID-19 through image processing using X-ray images is proven to be usable in which it provides an end-to-end structure without the need for manual feature extraction and manual selection methods.
Název v anglickém jazyce
COVID-19 anomaly detection and classification method based on supervised machine learning of chest X-ray images
Popis výsledku anglicky
The term COVID-19 is an abbreviation of Coronavirus 2019, which is considered a global pandemic that threatens the lives of millions of people. Early detection of the disease offers ample opportunity of recovery and prevention of spreading. This paper proposes a method for classification and early detection of COVID-19 through image processing using X-ray images. A set of procedures are applied, including preprocessing (image noise removal, image thresholding, and morphological operation), Region of Interest (ROI) detection and segmentation, feature extraction, (Local binary pattern (LBP), Histogram of Gradient (HOG), and Haralick texture features) and classification (K-Nearest Neighbor (KNN) and Support Vector Machine (SVM)). The combinations of the feature extraction operators and classifiers results in six models, namely LBP-KNN, HOG-KNN, Haralick-KNN, LBP-SVM, HOG-SVM, and Haralick-SVM. The six models are tested based on test samples of 5,000 images with the percentage of training of 5-folds cross-validation. The evaluation results show high diagnosis accuracy from 89.2% up to 98.66%. The LBP-KNN model outperforms the other models in which it achieves an average accuracy of 98.66%, a sensitivity of 97.76%, specificity of 100%, and precision of 100%. The proposed method for early detection and classification of COVID-19 through image processing using X-ray images is proven to be usable in which it provides an end-to-end structure without the need for manual feature extraction and manual selection methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Results in Physics
ISSN
2211-3797
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
105045
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
1-8
Kód UT WoS článku
000751740300039
EID výsledku v databázi Scopus
2-s2.0-85120483972