Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

COVID-19 anomaly detection and classification method based on supervised machine learning of chest X-ray images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10249300" target="_blank" >RIV/61989100:27240/21:10249300 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85120483972&origin=resultslist&sort=plf-f&src=s&st1=Nedoma%2cJ.&sid=f446027e94f07f944af015edb4136c3a&sot=b&sdt=b&sl=23&s=AUTHOR-NAME%28Nedoma%2c+J.%29&relpos=6&citeCnt=1&searchTerm=&featureToggles=FEATURE_NEW_DOC_DETAILS_EXPORT:1" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85120483972&origin=resultslist&sort=plf-f&src=s&st1=Nedoma%2cJ.&sid=f446027e94f07f944af015edb4136c3a&sot=b&sdt=b&sl=23&s=AUTHOR-NAME%28Nedoma%2c+J.%29&relpos=6&citeCnt=1&searchTerm=&featureToggles=FEATURE_NEW_DOC_DETAILS_EXPORT:1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rinp.2021.105045" target="_blank" >10.1016/j.rinp.2021.105045</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    COVID-19 anomaly detection and classification method based on supervised machine learning of chest X-ray images

  • Popis výsledku v původním jazyce

    The term COVID-19 is an abbreviation of Coronavirus 2019, which is considered a global pandemic that threatens the lives of millions of people. Early detection of the disease offers ample opportunity of recovery and prevention of spreading. This paper proposes a method for classification and early detection of COVID-19 through image processing using X-ray images. A set of procedures are applied, including preprocessing (image noise removal, image thresholding, and morphological operation), Region of Interest (ROI) detection and segmentation, feature extraction, (Local binary pattern (LBP), Histogram of Gradient (HOG), and Haralick texture features) and classification (K-Nearest Neighbor (KNN) and Support Vector Machine (SVM)). The combinations of the feature extraction operators and classifiers results in six models, namely LBP-KNN, HOG-KNN, Haralick-KNN, LBP-SVM, HOG-SVM, and Haralick-SVM. The six models are tested based on test samples of 5,000 images with the percentage of training of 5-folds cross-validation. The evaluation results show high diagnosis accuracy from 89.2% up to 98.66%. The LBP-KNN model outperforms the other models in which it achieves an average accuracy of 98.66%, a sensitivity of 97.76%, specificity of 100%, and precision of 100%. The proposed method for early detection and classification of COVID-19 through image processing using X-ray images is proven to be usable in which it provides an end-to-end structure without the need for manual feature extraction and manual selection methods.

  • Název v anglickém jazyce

    COVID-19 anomaly detection and classification method based on supervised machine learning of chest X-ray images

  • Popis výsledku anglicky

    The term COVID-19 is an abbreviation of Coronavirus 2019, which is considered a global pandemic that threatens the lives of millions of people. Early detection of the disease offers ample opportunity of recovery and prevention of spreading. This paper proposes a method for classification and early detection of COVID-19 through image processing using X-ray images. A set of procedures are applied, including preprocessing (image noise removal, image thresholding, and morphological operation), Region of Interest (ROI) detection and segmentation, feature extraction, (Local binary pattern (LBP), Histogram of Gradient (HOG), and Haralick texture features) and classification (K-Nearest Neighbor (KNN) and Support Vector Machine (SVM)). The combinations of the feature extraction operators and classifiers results in six models, namely LBP-KNN, HOG-KNN, Haralick-KNN, LBP-SVM, HOG-SVM, and Haralick-SVM. The six models are tested based on test samples of 5,000 images with the percentage of training of 5-folds cross-validation. The evaluation results show high diagnosis accuracy from 89.2% up to 98.66%. The LBP-KNN model outperforms the other models in which it achieves an average accuracy of 98.66%, a sensitivity of 97.76%, specificity of 100%, and precision of 100%. The proposed method for early detection and classification of COVID-19 through image processing using X-ray images is proven to be usable in which it provides an end-to-end structure without the need for manual feature extraction and manual selection methods.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Results in Physics

  • ISSN

    2211-3797

  • e-ISSN

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    105045

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    1-8

  • Kód UT WoS článku

    000751740300039

  • EID výsledku v databázi Scopus

    2-s2.0-85120483972