Self-learning Wavelet Compression Method for Data Transmission from Environmental Monitoring Stations with a Low Bandwidth IoT Interface
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10249507" target="_blank" >RIV/61989100:27240/21:10249507 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9660160" target="_blank" >https://ieeexplore.ieee.org/document/9660160</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SSCI50451.2021.9660160" target="_blank" >10.1109/SSCI50451.2021.9660160</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Self-learning Wavelet Compression Method for Data Transmission from Environmental Monitoring Stations with a Low Bandwidth IoT Interface
Popis výsledku v původním jazyce
The Internet of Things concept raises the possibility of connecting monitoring stations to the Internet. In many cases, these devices are equipped with a wireless interface which allows the transmission of data through a low-power wide-area network (LPWAN). This type of network has a limited data throughput due to technological limitations and regional restrictions. There are many research challenges in maximizing the useful transmitted information through a limited transmission channel. The paper presents self-learning wavelet compression method controlled by Q-Learning (QL), which is able to optimize an amount of transmitted data using lossy compression. The aim is to use transmission channel throughput as effectively as possible without the loss of data. A QL agent selects an appropriate compression method according to buffer use and maintains this level at 70 %. The proposed method was tested on environmental historical data. The results showed that our method is able to use more than 96 % of the available transmission channel throughput with minimal data loss, even if the communications channel throughput experiences significant changes. (C) 2021 IEEE.
Název v anglickém jazyce
Self-learning Wavelet Compression Method for Data Transmission from Environmental Monitoring Stations with a Low Bandwidth IoT Interface
Popis výsledku anglicky
The Internet of Things concept raises the possibility of connecting monitoring stations to the Internet. In many cases, these devices are equipped with a wireless interface which allows the transmission of data through a low-power wide-area network (LPWAN). This type of network has a limited data throughput due to technological limitations and regional restrictions. There are many research challenges in maximizing the useful transmitted information through a limited transmission channel. The paper presents self-learning wavelet compression method controlled by Q-Learning (QL), which is able to optimize an amount of transmitted data using lossy compression. The aim is to use transmission channel throughput as effectively as possible without the loss of data. A QL agent selects an appropriate compression method according to buffer use and maintains this level at 70 %. The proposed method was tested on environmental historical data. The results showed that our method is able to use more than 96 % of the available transmission channel throughput with minimal data loss, even if the communications channel throughput experiences significant changes. (C) 2021 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - proceedings
ISBN
978-1-72819-048-8
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Orlando
Datum konání akce
5. 12. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—