Improvement of Searching for Appropriate Textual Information Sources Using Association Rules and FCA
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10249576" target="_blank" >RIV/61989100:27240/21:10249576 - isvavai.cz</a>
Výsledek na webu
<a href="https://ebooks.iospress.nl/doi/10.3233/FAIA210487" target="_blank" >https://ebooks.iospress.nl/doi/10.3233/FAIA210487</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/FAIA210487" target="_blank" >10.3233/FAIA210487</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improvement of Searching for Appropriate Textual Information Sources Using Association Rules and FCA
Popis výsledku v původním jazyce
This paper deals with an optimization of methods for recommending relevant text sources. We summarize methods that are based on a theory of Association Rules and Formal Conceptual Analysis which are computationally demanding. Therefore we are applying the 'Iceberg Concepts', which significantly prune output data space and thus accelerate the whole process of the calculation. Association Rules and the Relevant Ordering, which is an FCA-based method, are applied on data obtained from explications of an atomic concept. Explications are procured from natural language sentences formalized into TIL constructions and processed by a machine learning algorithm. TIL constructions are utilized only as a specification language and they are described in numerous publications, so we do not deal with TIL in this paper. (C) 2021 The authors and IOS Press.
Název v anglickém jazyce
Improvement of Searching for Appropriate Textual Information Sources Using Association Rules and FCA
Popis výsledku anglicky
This paper deals with an optimization of methods for recommending relevant text sources. We summarize methods that are based on a theory of Association Rules and Formal Conceptual Analysis which are computationally demanding. Therefore we are applying the 'Iceberg Concepts', which significantly prune output data space and thus accelerate the whole process of the calculation. Association Rules and the Relevant Ordering, which is an FCA-based method, are applied on data obtained from explications of an atomic concept. Explications are procured from natural language sentences formalized into TIL constructions and processed by a machine learning algorithm. TIL constructions are utilized only as a specification language and they are described in numerous publications, so we do not deal with TIL in this paper. (C) 2021 The authors and IOS Press.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Artificial Intelligence and Applications. Volume 343
ISSN
0922-6389
e-ISSN
—
Svazek periodika
343
Číslo periodika v rámci svazku
343
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
204-214
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85123752950