Design and analysis of efficient neural intrusion detection for wireless sensor networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10249611" target="_blank" >RIV/61989100:27240/21:10249611 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/cpe.6152" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/cpe.6152</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/cpe.6152" target="_blank" >10.1002/cpe.6152</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Design and analysis of efficient neural intrusion detection for wireless sensor networks
Popis výsledku v původním jazyce
Wireless sensor networks (WSNs) are important building blocks of the communication infrastructure in smart cities, intelligent transportation systems, Industry, Energy, and Agriculture 4.0, the Internet of Things, and other areas quickly adopting the concepts of fog and edge computing. Their cybernetic security is a major issue and efficient methods to improve their safety and reliability are required. Intrusion detection systems (IDSs) are complex systems that discover cybernetic attacks, detect malicious network traffic, and, in general, protect computer systems. Artificial neural networks are used by a variety of advanced intrusion detection systems with outstanding results. Their successful use in the specific conditions of WSNs requires efficient learning, adaptation, and inference. In this work, the acceleration of a neural intrusion detection model, developed specifically for wireless sensor networks, is proposed and studied, especially from the learning and classification accuracy and energy consumption points of view.
Název v anglickém jazyce
Design and analysis of efficient neural intrusion detection for wireless sensor networks
Popis výsledku anglicky
Wireless sensor networks (WSNs) are important building blocks of the communication infrastructure in smart cities, intelligent transportation systems, Industry, Energy, and Agriculture 4.0, the Internet of Things, and other areas quickly adopting the concepts of fog and edge computing. Their cybernetic security is a major issue and efficient methods to improve their safety and reliability are required. Intrusion detection systems (IDSs) are complex systems that discover cybernetic attacks, detect malicious network traffic, and, in general, protect computer systems. Artificial neural networks are used by a variety of advanced intrusion detection systems with outstanding results. Their successful use in the specific conditions of WSNs requires efficient learning, adaptation, and inference. In this work, the acceleration of a neural intrusion detection model, developed specifically for wireless sensor networks, is proposed and studied, especially from the learning and classification accuracy and energy consumption points of view.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/TN01000024" target="_blank" >TN01000024: Národní centrum kompetence - Kybernetika a umělá inteligence</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Concurrency Computation Practice and Experience
ISSN
1532-0626
e-ISSN
—
Svazek periodika
33
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
000599461600001
EID výsledku v databázi Scopus
—