A Self-learning Clustering Protocol in Wireless Sensor Networks for IoT Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10248417" target="_blank" >RIV/61989100:27240/22:10248417 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-84910-8_16" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-84910-8_16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-84910-8_16" target="_blank" >10.1007/978-3-030-84910-8_16</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Self-learning Clustering Protocol in Wireless Sensor Networks for IoT Applications
Popis výsledku v původním jazyce
The integration of Wireless sensor networks (WSN) and Internet of Things (IoT) perform many tasks control or monitor the surrounding area or the environment. The WSN-based IoT consists of many sensor nodes connect which transmit the collecting data of the environment to the manager through the Internet. The network topology requires high reliability connections while requires low energy consumption at the sink node and long network lifetime. In this paper, we introduce the self-learning clustering protocol to discover neighbors and the network topology. The cluster head is selected based on the information of the neighbors and the residual energy of the node. The maximum number of cluster members is set according to the network density. The proposed protocol can adapt the changing of the dynamic network with low energy consumption; therefore, ensuring the network connectivity. The simulation results show that the proposed clustering protocol performs well in terms of long network lifetime and high throughput while comparing to other clustering protocols. (C) 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Název v anglickém jazyce
A Self-learning Clustering Protocol in Wireless Sensor Networks for IoT Applications
Popis výsledku anglicky
The integration of Wireless sensor networks (WSN) and Internet of Things (IoT) perform many tasks control or monitor the surrounding area or the environment. The WSN-based IoT consists of many sensor nodes connect which transmit the collecting data of the environment to the manager through the Internet. The network topology requires high reliability connections while requires low energy consumption at the sink node and long network lifetime. In this paper, we introduce the self-learning clustering protocol to discover neighbors and the network topology. The cluster head is selected based on the information of the neighbors and the residual energy of the node. The maximum number of cluster members is set according to the network density. The proposed protocol can adapt the changing of the dynamic network with low energy consumption; therefore, ensuring the network connectivity. The simulation results show that the proposed clustering protocol performs well in terms of long network lifetime and high throughput while comparing to other clustering protocols. (C) 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018140" target="_blank" >LM2018140: e-Infrastruktura CZ</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Networks and Systems. Volume 312
ISBN
978-3-030-84909-2
ISSN
2367-3370
e-ISSN
2367-3389
Počet stran výsledku
9
Strana od-do
149-157
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Tchaj-čung
Datum konání akce
1. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—