Air gasification of high-ash sewage sludge for hydrogen production: Experimental, sensitivity and predictive analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10248554" target="_blank" >RIV/61989100:27240/22:10248554 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85121370150&origin=resultslist&sort=plf-f" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85121370150&origin=resultslist&sort=plf-f</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijhydene.2021.11.192" target="_blank" >10.1016/j.ijhydene.2021.11.192</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Air gasification of high-ash sewage sludge for hydrogen production: Experimental, sensitivity and predictive analysis
Popis výsledku v původním jazyce
In this work, air gasification of sewage sludge was conducted in a lab-scale bubbling fluidized bed gasifier. Further, the gasification process was modeled using artificial neural networks for the product gas composition with varying temperatures and equivalence ratios. Neural network-based prediction will help to predict the hydrogen production from product gas composition at various temperatures and equivalence ratios. The gasification efficiency and lower heating values were also established as a function of temperatures and equivalence ratios. The maximum H2 and CO was recorded as 16.26 vol% and 33.55 vol%. Intraileally at ER 0.2 gas composition H2, CO, and CH4 show high concentrations of 20.56 vol%, 45.91 vol%, and 13.32 vol%, respectively. At the same time, CO2 was lower as 20.20 vol% at ER 0.2. Therefore, optimum values are suggested for maximum H2 and CO yield and lower concentration of CO2 at ER 0.25 and temperature of 850 oC. A predictive model based on an Artificial Neural network is also developed to predict the hydrogen production from product gas composition at various temperatures and equivalence ratios. The network has been trained with different topologies to find the optimal structure for temperature and equivalence ratio. The obtained results showed that the regression coefficients for training, validation, and testing are 0.99999, 0.99998, and 0.99992, respectively, which clearly identifies the training efficiency of the trained model. (C) 2021 Hydrogen Energy Publications LLC
Název v anglickém jazyce
Air gasification of high-ash sewage sludge for hydrogen production: Experimental, sensitivity and predictive analysis
Popis výsledku anglicky
In this work, air gasification of sewage sludge was conducted in a lab-scale bubbling fluidized bed gasifier. Further, the gasification process was modeled using artificial neural networks for the product gas composition with varying temperatures and equivalence ratios. Neural network-based prediction will help to predict the hydrogen production from product gas composition at various temperatures and equivalence ratios. The gasification efficiency and lower heating values were also established as a function of temperatures and equivalence ratios. The maximum H2 and CO was recorded as 16.26 vol% and 33.55 vol%. Intraileally at ER 0.2 gas composition H2, CO, and CH4 show high concentrations of 20.56 vol%, 45.91 vol%, and 13.32 vol%, respectively. At the same time, CO2 was lower as 20.20 vol% at ER 0.2. Therefore, optimum values are suggested for maximum H2 and CO yield and lower concentration of CO2 at ER 0.25 and temperature of 850 oC. A predictive model based on an Artificial Neural network is also developed to predict the hydrogen production from product gas composition at various temperatures and equivalence ratios. The network has been trained with different topologies to find the optimal structure for temperature and equivalence ratio. The obtained results showed that the regression coefficients for training, validation, and testing are 0.99999, 0.99998, and 0.99992, respectively, which clearly identifies the training efficiency of the trained model. (C) 2021 Hydrogen Energy Publications LLC
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
<a href="/cs/project/LTI19002" target="_blank" >LTI19002: Zapojení českých výzkumných organizací do Evropské aliance pro energetický výzkum EERA (EERA-CZ 2)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Hydrogen Energy
ISSN
0360-3199
e-ISSN
—
Svazek periodika
2021
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
20
Strana od-do
nestrankovano
Kód UT WoS článku
000889311300016
EID výsledku v databázi Scopus
2-s2.0-85121370150