Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Air gasification of high-ash sewage sludge for hydrogen production: Experimental, sensitivity and predictive analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10248554" target="_blank" >RIV/61989100:27240/22:10248554 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85121370150&origin=resultslist&sort=plf-f" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85121370150&origin=resultslist&sort=plf-f</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijhydene.2021.11.192" target="_blank" >10.1016/j.ijhydene.2021.11.192</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Air gasification of high-ash sewage sludge for hydrogen production: Experimental, sensitivity and predictive analysis

  • Popis výsledku v původním jazyce

    In this work, air gasification of sewage sludge was conducted in a lab-scale bubbling fluidized bed gasifier. Further, the gasification process was modeled using artificial neural networks for the product gas composition with varying temperatures and equivalence ratios. Neural network-based prediction will help to predict the hydrogen production from product gas composition at various temperatures and equivalence ratios. The gasification efficiency and lower heating values were also established as a function of temperatures and equivalence ratios. The maximum H2 and CO was recorded as 16.26 vol% and 33.55 vol%. Intraileally at ER 0.2 gas composition H2, CO, and CH4 show high concentrations of 20.56 vol%, 45.91 vol%, and 13.32 vol%, respectively. At the same time, CO2 was lower as 20.20 vol% at ER 0.2. Therefore, optimum values are suggested for maximum H2 and CO yield and lower concentration of CO2 at ER 0.25 and temperature of 850 oC. A predictive model based on an Artificial Neural network is also developed to predict the hydrogen production from product gas composition at various temperatures and equivalence ratios. The network has been trained with different topologies to find the optimal structure for temperature and equivalence ratio. The obtained results showed that the regression coefficients for training, validation, and testing are 0.99999, 0.99998, and 0.99992, respectively, which clearly identifies the training efficiency of the trained model. (C) 2021 Hydrogen Energy Publications LLC

  • Název v anglickém jazyce

    Air gasification of high-ash sewage sludge for hydrogen production: Experimental, sensitivity and predictive analysis

  • Popis výsledku anglicky

    In this work, air gasification of sewage sludge was conducted in a lab-scale bubbling fluidized bed gasifier. Further, the gasification process was modeled using artificial neural networks for the product gas composition with varying temperatures and equivalence ratios. Neural network-based prediction will help to predict the hydrogen production from product gas composition at various temperatures and equivalence ratios. The gasification efficiency and lower heating values were also established as a function of temperatures and equivalence ratios. The maximum H2 and CO was recorded as 16.26 vol% and 33.55 vol%. Intraileally at ER 0.2 gas composition H2, CO, and CH4 show high concentrations of 20.56 vol%, 45.91 vol%, and 13.32 vol%, respectively. At the same time, CO2 was lower as 20.20 vol% at ER 0.2. Therefore, optimum values are suggested for maximum H2 and CO yield and lower concentration of CO2 at ER 0.25 and temperature of 850 oC. A predictive model based on an Artificial Neural network is also developed to predict the hydrogen production from product gas composition at various temperatures and equivalence ratios. The network has been trained with different topologies to find the optimal structure for temperature and equivalence ratio. The obtained results showed that the regression coefficients for training, validation, and testing are 0.99999, 0.99998, and 0.99992, respectively, which clearly identifies the training efficiency of the trained model. (C) 2021 Hydrogen Energy Publications LLC

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTI19002" target="_blank" >LTI19002: Zapojení českých výzkumných organizací do Evropské aliance pro energetický výzkum EERA (EERA-CZ 2)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Hydrogen Energy

  • ISSN

    0360-3199

  • e-ISSN

  • Svazek periodika

    2021

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    20

  • Strana od-do

    nestrankovano

  • Kód UT WoS článku

    000889311300016

  • EID výsledku v databázi Scopus

    2-s2.0-85121370150