Dermatologist-Level Classification of Skin Cancer Using Cascaded Ensembling of Convolutional Neural Network and Handcrafted Features Based Deep Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10249740" target="_blank" >RIV/61989100:27240/22:10249740 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9706441" target="_blank" >https://ieeexplore.ieee.org/document/9706441</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2022.3149824" target="_blank" >10.1109/ACCESS.2022.3149824</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dermatologist-Level Classification of Skin Cancer Using Cascaded Ensembling of Convolutional Neural Network and Handcrafted Features Based Deep Neural Network
Popis výsledku v původním jazyce
Skin cancer is caused due to unusual development of skin cells and deadly type cancer. Early diagnosis is very significant and can avoid some categories of skin cancers, such as melanoma and focal cell carcinoma. The recognition and the classification of skin malignant growth in the beginning time is expensive and challenging. The deep learning architectures such as recurrent networks and convolutional neural networks (ConvNets) are developed in the past, which are proven appropriate for non-handcrafted extraction of complex features. To additional expand the efficiency of the ConvNet models, a cascaded ensembled network that uses an integration of ConvNet and handcrafted features based multi-layer perceptron is proposed in this work. This offered model utilizes the convolutional neural network model to mine non-handcrafted image features and colour moments and texture features as handcrafted features. It is demonstrated that accuracy of ensembled deep learning model is improved to 98.3% from 85.3% of convolutional neural network model.
Název v anglickém jazyce
Dermatologist-Level Classification of Skin Cancer Using Cascaded Ensembling of Convolutional Neural Network and Handcrafted Features Based Deep Neural Network
Popis výsledku anglicky
Skin cancer is caused due to unusual development of skin cells and deadly type cancer. Early diagnosis is very significant and can avoid some categories of skin cancers, such as melanoma and focal cell carcinoma. The recognition and the classification of skin malignant growth in the beginning time is expensive and challenging. The deep learning architectures such as recurrent networks and convolutional neural networks (ConvNets) are developed in the past, which are proven appropriate for non-handcrafted extraction of complex features. To additional expand the efficiency of the ConvNet models, a cascaded ensembled network that uses an integration of ConvNet and handcrafted features based multi-layer perceptron is proposed in this work. This offered model utilizes the convolutional neural network model to mine non-handcrafted image features and colour moments and texture features as handcrafted features. It is demonstrated that accuracy of ensembled deep learning model is improved to 98.3% from 85.3% of convolutional neural network model.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
neuveden
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
17920-17932
Kód UT WoS článku
000757818400001
EID výsledku v databázi Scopus
2-s2.0-85124719303