Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Scheduling and Securing Drone Charging System Using Particle Swarm Optimization and Blockchain Technology

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10251923" target="_blank" >RIV/61989100:27240/22:10251923 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2504-446X/6/9/237" target="_blank" >https://www.mdpi.com/2504-446X/6/9/237</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/drones6090237" target="_blank" >10.3390/drones6090237</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Scheduling and Securing Drone Charging System Using Particle Swarm Optimization and Blockchain Technology

  • Popis výsledku v původním jazyce

    Unmanned aerial vehicles (UAVs) have emerged as a powerful technology for introducing untraditional solutions to many challenges in non-military fields and industrial applications in the next few years. However, the limitations of a drone&apos;s battery and the available optimal charging techniques represent a significant challenge in using UAVs on a large scale. This problem means UAVs are unable to fly for a long time; hence, drones&apos; services fail dramatically. Due to this challenge, optimizing the scheduling of drone charging may be an unusual solution to drones&apos; battery problems. Moreover, authenticating drones and verifying their charging transactions with charging stations is an essential associated problem. This paper proposes a scheduling and secure drone charging system in response to these challenges. The proposed system was simulated on a generated dataset consisting of 300 drones and 50 charging station points to evaluate its performance. The optimization of the proposed scheduling methodology was based on the particle swarm optimization (PSO) algorithm and game theory-based auction model. In addition, authenticating and verifying drone charging transactions were executed using a proposed blockchain protocol. The optimization and scheduling results showed the PSO algorithm&apos;s efficiency in optimizing drone routes and preventing drone collisions during charging flights with low error rates with an MAE = 0.0017 and an MSE = 0.0159. Moreover, the investigation to authenticate and verify the drone charging transactions showed the efficiency of the proposed blockchain protocol while simulating the proposed system on the Ethereum platform. The obtained results clarified the efficiency of the proposed blockchain protocol in executing drone charging transactions within a short time and low latency within an average of 0.34 s based on blockchain performance metrics. Moreover, the proposed scheduling methodology achieved a 96.8% success rate of drone charging cases, while only 3.2% of drones failed to charge after three scheduling rounds.

  • Název v anglickém jazyce

    Scheduling and Securing Drone Charging System Using Particle Swarm Optimization and Blockchain Technology

  • Popis výsledku anglicky

    Unmanned aerial vehicles (UAVs) have emerged as a powerful technology for introducing untraditional solutions to many challenges in non-military fields and industrial applications in the next few years. However, the limitations of a drone&apos;s battery and the available optimal charging techniques represent a significant challenge in using UAVs on a large scale. This problem means UAVs are unable to fly for a long time; hence, drones&apos; services fail dramatically. Due to this challenge, optimizing the scheduling of drone charging may be an unusual solution to drones&apos; battery problems. Moreover, authenticating drones and verifying their charging transactions with charging stations is an essential associated problem. This paper proposes a scheduling and secure drone charging system in response to these challenges. The proposed system was simulated on a generated dataset consisting of 300 drones and 50 charging station points to evaluate its performance. The optimization of the proposed scheduling methodology was based on the particle swarm optimization (PSO) algorithm and game theory-based auction model. In addition, authenticating and verifying drone charging transactions were executed using a proposed blockchain protocol. The optimization and scheduling results showed the PSO algorithm&apos;s efficiency in optimizing drone routes and preventing drone collisions during charging flights with low error rates with an MAE = 0.0017 and an MSE = 0.0159. Moreover, the investigation to authenticate and verify the drone charging transactions showed the efficiency of the proposed blockchain protocol while simulating the proposed system on the Ethereum platform. The obtained results clarified the efficiency of the proposed blockchain protocol in executing drone charging transactions within a short time and low latency within an average of 0.34 s based on blockchain performance metrics. Moreover, the proposed scheduling methodology achieved a 96.8% success rate of drone charging cases, while only 3.2% of drones failed to charge after three scheduling rounds.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Drones

  • ISSN

    2504-446X

  • e-ISSN

    2504-446X

  • Svazek periodika

    6

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    26

  • Strana od-do

    nestrankovano

  • Kód UT WoS článku

    000858153600001

  • EID výsledku v databázi Scopus