Solution of 3D contact shape optimization problems with Coulomb friction based on TFETI
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10251180" target="_blank" >RIV/61989100:27240/23:10251180 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/23:10251180
Výsledek na webu
<a href="https://link.springer.com/article/10.21136/AM.2022.0124-22" target="_blank" >https://link.springer.com/article/10.21136/AM.2022.0124-22</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/AM.2022.0124-22" target="_blank" >10.21136/AM.2022.0124-22</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solution of 3D contact shape optimization problems with Coulomb friction based on TFETI
Popis výsledku v původním jazyce
The present paper deals with the numerical solution of 3D shape optimization problems in frictional contact mechanics. Mathematical modelling of the Coulomb friction problem leads to an implicit variational inequality which can be written as a fixed point problem. Furthermore, it is known that the discretized problem is uniquely solvable for small coefficients of friction. Since the considered problem is nonsmooth, we exploit the generalized Mordukhovich's differential calculus to compute the needed subgradient information.The state problem is solved using successive approximations combined with the Total FETI (TFETI) method. The latter is based on tearing the bodies into "floating " subdomains, discretization by finite elements, and solving the resulting quadratic programming problem by augmented Lagrangians.The presented numerical experiments demonstrate our method's power and the importance of the proper modelling of 3D frictional contact problems. The state problem solution and the sensitivity analysis process were implemented in parallel.
Název v anglickém jazyce
Solution of 3D contact shape optimization problems with Coulomb friction based on TFETI
Popis výsledku anglicky
The present paper deals with the numerical solution of 3D shape optimization problems in frictional contact mechanics. Mathematical modelling of the Coulomb friction problem leads to an implicit variational inequality which can be written as a fixed point problem. Furthermore, it is known that the discretized problem is uniquely solvable for small coefficients of friction. Since the considered problem is nonsmooth, we exploit the generalized Mordukhovich's differential calculus to compute the needed subgradient information.The state problem is solved using successive approximations combined with the Total FETI (TFETI) method. The latter is based on tearing the bodies into "floating " subdomains, discretization by finite elements, and solving the resulting quadratic programming problem by augmented Lagrangians.The presented numerical experiments demonstrate our method's power and the importance of the proper modelling of 3D frictional contact problems. The state problem solution and the sensitivity analysis process were implemented in parallel.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008425" target="_blank" >EF17_049/0008425: Platforma pro výzkum orientovaný na Průmysl 4.0 a robotiku v ostravské aglomeraci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applications of Mathematics
ISSN
0862-7940
e-ISSN
1572-9109
Svazek periodika
68
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
20
Strana od-do
405-424
Kód UT WoS článku
000900050400001
EID výsledku v databázi Scopus
2-s2.0-85144231168