Federated-Learning Based Privacy Preservation and Fraud-Enabled Blockchain IoMT System for Healthcare
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10251456" target="_blank" >RIV/61989100:27240/23:10251456 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85128336608&origin=resultslist&sort=plf-f" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85128336608&origin=resultslist&sort=plf-f</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JBHI.2022.3165945" target="_blank" >10.1109/JBHI.2022.3165945</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Federated-Learning Based Privacy Preservation and Fraud-Enabled Blockchain IoMT System for Healthcare
Popis výsledku v původním jazyce
These days, the usage of machine-learning-enabled dynamic Internet of Medical Things (IoMT) systems with multiple technologies for digital healthcare applications has been growing progressively in practice. Machine learning plays a vital role in the IoMT system to balance the load between delay and energy. However, the traditional learning models fraud on the data in the distributed IoMT system for healthcare applications are still a critical research problem in practice. The study devises a federated learning-based blockchain-enabled task scheduling (FL-BETS) framework with different dynamic heuristics. The study considers the different healthcare applications that have both hard constraint (e.g., deadline) and resource energy consumption (e.g., soft constraint) during execution on the distributed fog and cloud nodes. The goal of FL-BETS is to identify and ensure the privacy preservation and fraud of data at various levels, such as local fog nodes and remote clouds, with minimum energy consumption and delay, and to satisfy the deadlines of healthcare workloads. The study introduces the mathematical model. In the performance evaluation, FLBETS outperforms all existing machine learning and blockchain mechanisms in fraud analysis, data validation, energy and delay constraints for healthcare applications.
Název v anglickém jazyce
Federated-Learning Based Privacy Preservation and Fraud-Enabled Blockchain IoMT System for Healthcare
Popis výsledku anglicky
These days, the usage of machine-learning-enabled dynamic Internet of Medical Things (IoMT) systems with multiple technologies for digital healthcare applications has been growing progressively in practice. Machine learning plays a vital role in the IoMT system to balance the load between delay and energy. However, the traditional learning models fraud on the data in the distributed IoMT system for healthcare applications are still a critical research problem in practice. The study devises a federated learning-based blockchain-enabled task scheduling (FL-BETS) framework with different dynamic heuristics. The study considers the different healthcare applications that have both hard constraint (e.g., deadline) and resource energy consumption (e.g., soft constraint) during execution on the distributed fog and cloud nodes. The goal of FL-BETS is to identify and ensure the privacy preservation and fraud of data at various levels, such as local fog nodes and remote clouds, with minimum energy consumption and delay, and to satisfy the deadlines of healthcare workloads. The study introduces the mathematical model. In the performance evaluation, FLBETS outperforms all existing machine learning and blockchain mechanisms in fraud analysis, data validation, energy and delay constraints for healthcare applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Journal of Biomedical and Health Informatics
ISSN
2168-2194
e-ISSN
2168-2208
Svazek periodika
27
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
664-672
Kód UT WoS článku
000943693600012
EID výsledku v databázi Scopus
2-s2.0-85128336608