IOT-Enabled Model for Weed Seedling Classification: An Application for Smart Agriculture
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10252204" target="_blank" >RIV/61989100:27240/23:10252204 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2624-7402/5/1/17" target="_blank" >https://www.mdpi.com/2624-7402/5/1/17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/agriengineering5010017" target="_blank" >10.3390/agriengineering5010017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
IOT-Enabled Model for Weed Seedling Classification: An Application for Smart Agriculture
Popis výsledku v původním jazyce
Smart agriculture is a concept that refers to a revolution in the agriculture industry that promotes the monitoring of activities necessary to transform agricultural methods to ensure food security in an ever-changing environment. These days, the role of technology is increasing rapidly in every sector. Smart agriculture is one of these sectors, where technology is playing a significant role. The key aim of smart farming is to use the technologies to increase the quality and quantity of agricultural products. IOT and digital image processing are two commonly utilized technologies, which have a wide range of applications in agriculture. IOT is an abbreviation for the Internet of things, i.e., devices to execute different functions. Image processing offers various types of imaging sensors and processing that could lead to numerous kinds of IOT-ready applications. In this work, an integrated application of IOT and digital image processing for weed plant detection is explored using the Weed-ConvNet model to provide a detailed architecture of these technologies in the agriculture domain. Additionally, the regularized Weed-ConvNet is designed for classification with grayscale and color segmented weed images. The accuracy of the Weed-ConvNet model with color segmented weed images is 0.978, which is better than 0.942 of the Weed-ConvNet model with grayscale segmented weed images.
Název v anglickém jazyce
IOT-Enabled Model for Weed Seedling Classification: An Application for Smart Agriculture
Popis výsledku anglicky
Smart agriculture is a concept that refers to a revolution in the agriculture industry that promotes the monitoring of activities necessary to transform agricultural methods to ensure food security in an ever-changing environment. These days, the role of technology is increasing rapidly in every sector. Smart agriculture is one of these sectors, where technology is playing a significant role. The key aim of smart farming is to use the technologies to increase the quality and quantity of agricultural products. IOT and digital image processing are two commonly utilized technologies, which have a wide range of applications in agriculture. IOT is an abbreviation for the Internet of things, i.e., devices to execute different functions. Image processing offers various types of imaging sensors and processing that could lead to numerous kinds of IOT-ready applications. In this work, an integrated application of IOT and digital image processing for weed plant detection is explored using the Weed-ConvNet model to provide a detailed architecture of these technologies in the agriculture domain. Additionally, the regularized Weed-ConvNet is designed for classification with grayscale and color segmented weed images. The accuracy of the Weed-ConvNet model with color segmented weed images is 0.978, which is better than 0.942 of the Weed-ConvNet model with grayscale segmented weed images.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
AgriEngineering
ISSN
2624-7402
e-ISSN
2624-7402
Svazek periodika
5
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
257-272
Kód UT WoS článku
000952900100001
EID výsledku v databázi Scopus
2-s2.0-85150958133