Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Thermoelectric energy harvesting for internet of things devices using machine learning: A review

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10252726" target="_blank" >RIV/61989100:27240/23:10252726 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12259" target="_blank" >https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12259</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1049/cit2.12259" target="_blank" >10.1049/cit2.12259</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Thermoelectric energy harvesting for internet of things devices using machine learning: A review

  • Popis výsledku v původním jazyce

    Initiatives to minimise battery use, address sustainability, and reduce regular maintenance have driven the challenge to use alternative power sources to supply energy to devices deployed in Internet of Things (IoT) networks. As a key pillar of fifth generation (5G) and beyond 5G networks,IoT is estimated to reach 42 billion devices by the year 2025. Thermoelectric generators (TEGs) are solid state energy harvesters which reliably and renewably convert thermal energy into electrical energy. These devices are able to recover lost thermal energy, produce energy in extreme environments, generate electric power in remote areas, and power micro-sensors. Applying the state of the art, the authorspresent a comprehensive review of machine learning (ML) approaches applied in combination with TEG-powered IoT devices to manage and predict available energy. The application areas of TEG-driven IoT devices that exploit as a heat source the temperature differences found in the environment, biological structures, machines, and other technologies are summarised. Based on detailed research of the state of the art in TEG-powered devices, the authors investigated the research challenges, applied algorithms and application areas of this technology. The aims of the research were to devise new energy prediction and energy management systems based on ML methods, create supervised algorithms which better estimate incoming energy, and develop unsupervised and semi-supervised approaches which provide adaptive and dynamic operation. The review results indicate that TEGs are a suitable energy harvesting technology for low-power applications through their scalability, usability in ubiquitous temperature difference scenarios, and long operating lifetime. However, TEGs also have low energy efficiency (around 10%) and require a relatively constant heat source.

  • Název v anglickém jazyce

    Thermoelectric energy harvesting for internet of things devices using machine learning: A review

  • Popis výsledku anglicky

    Initiatives to minimise battery use, address sustainability, and reduce regular maintenance have driven the challenge to use alternative power sources to supply energy to devices deployed in Internet of Things (IoT) networks. As a key pillar of fifth generation (5G) and beyond 5G networks,IoT is estimated to reach 42 billion devices by the year 2025. Thermoelectric generators (TEGs) are solid state energy harvesters which reliably and renewably convert thermal energy into electrical energy. These devices are able to recover lost thermal energy, produce energy in extreme environments, generate electric power in remote areas, and power micro-sensors. Applying the state of the art, the authorspresent a comprehensive review of machine learning (ML) approaches applied in combination with TEG-powered IoT devices to manage and predict available energy. The application areas of TEG-driven IoT devices that exploit as a heat source the temperature differences found in the environment, biological structures, machines, and other technologies are summarised. Based on detailed research of the state of the art in TEG-powered devices, the authors investigated the research challenges, applied algorithms and application areas of this technology. The aims of the research were to devise new energy prediction and energy management systems based on ML methods, create supervised algorithms which better estimate incoming energy, and develop unsupervised and semi-supervised approaches which provide adaptive and dynamic operation. The review results indicate that TEGs are a suitable energy harvesting technology for low-power applications through their scalability, usability in ubiquitous temperature difference scenarios, and long operating lifetime. However, TEGs also have low energy efficiency (around 10%) and require a relatively constant heat source.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/FW03010194" target="_blank" >FW03010194: Vývoj systému pro monitoring a vyhodnocení vybraných rizikových faktorů fyzické zátěže pracovních operací v kontextu Průmyslu 4.0.</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    CAAI Transactions on Intelligence Technology

  • ISSN

    2468-6557

  • e-ISSN

    2468-2322

  • Svazek periodika

    Neuveden

  • Číslo periodika v rámci svazku

    2023-07-27

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

  • Kód UT WoS článku

    001026580300001

  • EID výsledku v databázi Scopus

    2-s2.0-85165212008