Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fuzzy Decision Based Energy-Evolutionary System for Sustainable Transport in Ubiquitous Fog Network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253185" target="_blank" >RIV/61989100:27240/23:10253185 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://hcisj.com/data/file/article/2023070005/13-34.pdf?ckattempt=1" target="_blank" >http://hcisj.com/data/file/article/2023070005/13-34.pdf?ckattempt=1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.22967/HCIS.2023.13.034" target="_blank" >10.22967/HCIS.2023.13.034</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fuzzy Decision Based Energy-Evolutionary System for Sustainable Transport in Ubiquitous Fog Network

  • Popis výsledku v původním jazyce

    These days, the usage of sustainable transport applications has been growing in practice and has minimized global environmental issues as fuel vehicles did. Sustainable transport applications are distributed and can access data from anywhere in the network. However, due to sustainable electrical transport, much digital data is offloaded to the server to obtain the electricity stations. Therefore, many factors challenge sustainable vehicle applications, such as battery power consumption, service searching cost, execution delay, and execution accuracy. Thus, the existing decision support methods, such as TOPSIS multi-criteria decision method (MCDM), only support the fixed and accurate. Therefore, the fuzzy-based strategy will be more optimal for sustainable transport. The study devises the fuzzy-based energy-efficient decision support system (FBEES), which minimizes energy consumption, delay, and cost and increases scheduling accuracy for sustainable applications. These vehicles are connecting to the ubiquitous fog servers at different data centers in the system and offload their data for their processing. Simulation results show that FBEES minimizes energy by 30%, cost by 29%, delay by 31%, and improves accuracy compared to existing methods for sustainable transport applications. (C) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • Název v anglickém jazyce

    Fuzzy Decision Based Energy-Evolutionary System for Sustainable Transport in Ubiquitous Fog Network

  • Popis výsledku anglicky

    These days, the usage of sustainable transport applications has been growing in practice and has minimized global environmental issues as fuel vehicles did. Sustainable transport applications are distributed and can access data from anywhere in the network. However, due to sustainable electrical transport, much digital data is offloaded to the server to obtain the electricity stations. Therefore, many factors challenge sustainable vehicle applications, such as battery power consumption, service searching cost, execution delay, and execution accuracy. Thus, the existing decision support methods, such as TOPSIS multi-criteria decision method (MCDM), only support the fixed and accurate. Therefore, the fuzzy-based strategy will be more optimal for sustainable transport. The study devises the fuzzy-based energy-efficient decision support system (FBEES), which minimizes energy consumption, delay, and cost and increases scheduling accuracy for sustainable applications. These vehicles are connecting to the ubiquitous fog servers at different data centers in the system and offload their data for their processing. Simulation results show that FBEES minimizes energy by 30%, cost by 29%, delay by 31%, and improves accuracy compared to existing methods for sustainable transport applications. (C) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Human-centric Computing and Information Sciences

  • ISSN

    2192-1962

  • e-ISSN

    2192-1962

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    2023

  • Stát vydavatele periodika

    KR - Korejská republika

  • Počet stran výsledku

    16

  • Strana od-do

  • Kód UT WoS článku

    001093214300001

  • EID výsledku v databázi Scopus

    2-s2.0-85168553061