Fuzzy Decision Based Energy-Evolutionary System for Sustainable Transport in Ubiquitous Fog Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253185" target="_blank" >RIV/61989100:27240/23:10253185 - isvavai.cz</a>
Výsledek na webu
<a href="http://hcisj.com/data/file/article/2023070005/13-34.pdf?ckattempt=1" target="_blank" >http://hcisj.com/data/file/article/2023070005/13-34.pdf?ckattempt=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22967/HCIS.2023.13.034" target="_blank" >10.22967/HCIS.2023.13.034</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fuzzy Decision Based Energy-Evolutionary System for Sustainable Transport in Ubiquitous Fog Network
Popis výsledku v původním jazyce
These days, the usage of sustainable transport applications has been growing in practice and has minimized global environmental issues as fuel vehicles did. Sustainable transport applications are distributed and can access data from anywhere in the network. However, due to sustainable electrical transport, much digital data is offloaded to the server to obtain the electricity stations. Therefore, many factors challenge sustainable vehicle applications, such as battery power consumption, service searching cost, execution delay, and execution accuracy. Thus, the existing decision support methods, such as TOPSIS multi-criteria decision method (MCDM), only support the fixed and accurate. Therefore, the fuzzy-based strategy will be more optimal for sustainable transport. The study devises the fuzzy-based energy-efficient decision support system (FBEES), which minimizes energy consumption, delay, and cost and increases scheduling accuracy for sustainable applications. These vehicles are connecting to the ubiquitous fog servers at different data centers in the system and offload their data for their processing. Simulation results show that FBEES minimizes energy by 30%, cost by 29%, delay by 31%, and improves accuracy compared to existing methods for sustainable transport applications. (C) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Název v anglickém jazyce
Fuzzy Decision Based Energy-Evolutionary System for Sustainable Transport in Ubiquitous Fog Network
Popis výsledku anglicky
These days, the usage of sustainable transport applications has been growing in practice and has minimized global environmental issues as fuel vehicles did. Sustainable transport applications are distributed and can access data from anywhere in the network. However, due to sustainable electrical transport, much digital data is offloaded to the server to obtain the electricity stations. Therefore, many factors challenge sustainable vehicle applications, such as battery power consumption, service searching cost, execution delay, and execution accuracy. Thus, the existing decision support methods, such as TOPSIS multi-criteria decision method (MCDM), only support the fixed and accurate. Therefore, the fuzzy-based strategy will be more optimal for sustainable transport. The study devises the fuzzy-based energy-efficient decision support system (FBEES), which minimizes energy consumption, delay, and cost and increases scheduling accuracy for sustainable applications. These vehicles are connecting to the ubiquitous fog servers at different data centers in the system and offload their data for their processing. Simulation results show that FBEES minimizes energy by 30%, cost by 29%, delay by 31%, and improves accuracy compared to existing methods for sustainable transport applications. (C) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Human-centric Computing and Information Sciences
ISSN
2192-1962
e-ISSN
2192-1962
Svazek periodika
13
Číslo periodika v rámci svazku
2023
Stát vydavatele periodika
KR - Korejská republika
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
001093214300001
EID výsledku v databázi Scopus
2-s2.0-85168553061