Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automatic Identifier of Socket for Electrical Vehicles Using SWIN-Transformer and SimAM Attention Mechanism-Based EVS YOLO

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253574" target="_blank" >RIV/61989100:27240/23:10253574 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10268929" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10268929</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2023.3321290" target="_blank" >10.1109/ACCESS.2023.3321290</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automatic Identifier of Socket for Electrical Vehicles Using SWIN-Transformer and SimAM Attention Mechanism-Based EVS YOLO

  • Popis výsledku v původním jazyce

    Electric vehicle (EV) technology is emerging as one of the most promising solutions for green transportation. The same growth occurs in the charging infrastructure development and automating the EV charging process. Globally, EVs has different types of charging sockets and it&apos;s located at the various positions in the Vehicle. In simple, EV has a diversity in socket type and socket location. Hence, correctly identifying the socket type and location is mandatory to automate the charging process. The recent development in computer vision and robotic systems helps to automate EV charging without human intervention. Image processing and deep learning-based socket identification can help the EV charging infrastructure providers automate the process. Moreover, the deep learning techniques should be simple enough to implement in the real-time processing boards for experimental viability. Hence, this paper proposes a new You Only Look Once (YOLO) model called the Electric Vehicle Socket (EVS) YOLO that uses YOLOv5 as its base architecture with the addition of a vision-type transformer called the SWIN-Transformer and an attention mechanism called SimAM for better performance of the model in detecting the correct charging port. A dataset of 2700 images with six types of classes has been used to test the model, and the EVS -YOLO also evaluated with varying mechanisms of attention positioned at various places along the head. The paper contrasts the suggested model with alternative deep learning architectures and analyzes respective performances.

  • Název v anglickém jazyce

    Automatic Identifier of Socket for Electrical Vehicles Using SWIN-Transformer and SimAM Attention Mechanism-Based EVS YOLO

  • Popis výsledku anglicky

    Electric vehicle (EV) technology is emerging as one of the most promising solutions for green transportation. The same growth occurs in the charging infrastructure development and automating the EV charging process. Globally, EVs has different types of charging sockets and it&apos;s located at the various positions in the Vehicle. In simple, EV has a diversity in socket type and socket location. Hence, correctly identifying the socket type and location is mandatory to automate the charging process. The recent development in computer vision and robotic systems helps to automate EV charging without human intervention. Image processing and deep learning-based socket identification can help the EV charging infrastructure providers automate the process. Moreover, the deep learning techniques should be simple enough to implement in the real-time processing boards for experimental viability. Hence, this paper proposes a new You Only Look Once (YOLO) model called the Electric Vehicle Socket (EVS) YOLO that uses YOLOv5 as its base architecture with the addition of a vision-type transformer called the SWIN-Transformer and an attention mechanism called SimAM for better performance of the model in detecting the correct charging port. A dataset of 2700 images with six types of classes has been used to test the model, and the EVS -YOLO also evaluated with varying mechanisms of attention positioned at various places along the head. The paper contrasts the suggested model with alternative deep learning architectures and analyzes respective performances.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    111238-111254

  • Kód UT WoS článku

    001086204500001

  • EID výsledku v databázi Scopus

    2-s2.0-85174827300