Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10254570" target="_blank" >RIV/61989100:27240/23:10254570 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1996-1073/16/10/4060" target="_blank" >https://www.mdpi.com/1996-1073/16/10/4060</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/en16104060" target="_blank" >10.3390/en16104060</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead
Popis výsledku v původním jazyce
Short-term load forecasting (STLF) is critical for the energy industry. Accurate predictions of future electricity demand are necessary to ensure power systems' reliable and efficient operation. Various STLF models have been proposed in recent years, each with strengths and weaknesses. This paper comprehensively reviews some STLF models, including time series, artificial neural networks (ANNs), regression-based, and hybrid models. It first introduces the fundamental concepts and challenges of STLF, then discusses each model class's main features and assumptions. The paper compares the models in terms of their accuracy, robustness, computational efficiency, scalability, and adaptability and identifies each approach's advantages and limitations. Although this study suggests that ANNs and hybrid models may be the most promising ways to achieve accurate and reliable STLF, additional research is required to handle multiple input features, manage massive data sets, and adjust to shifting energy conditions.
Název v anglickém jazyce
Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead
Popis výsledku anglicky
Short-term load forecasting (STLF) is critical for the energy industry. Accurate predictions of future electricity demand are necessary to ensure power systems' reliable and efficient operation. Various STLF models have been proposed in recent years, each with strengths and weaknesses. This paper comprehensively reviews some STLF models, including time series, artificial neural networks (ANNs), regression-based, and hybrid models. It first introduces the fundamental concepts and challenges of STLF, then discusses each model class's main features and assumptions. The paper compares the models in terms of their accuracy, robustness, computational efficiency, scalability, and adaptability and identifies each approach's advantages and limitations. Although this study suggests that ANNs and hybrid models may be the most promising ways to achieve accurate and reliable STLF, additional research is required to handle multiple input features, manage massive data sets, and adjust to shifting energy conditions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energies
ISSN
1996-1073
e-ISSN
—
Svazek periodika
16
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
29
Strana od-do
—
Kód UT WoS článku
000996871600001
EID výsledku v databázi Scopus
2-s2.0-85160598295