An Improvement in Dynamic Behavior of Single Phase PM Brushless DC Motor Using Deep Neural Network and Mixture of Experts
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10254573" target="_blank" >RIV/61989100:27240/23:10254573 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10162182" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10162182</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2023.3289409" target="_blank" >10.1109/ACCESS.2023.3289409</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Improvement in Dynamic Behavior of Single Phase PM Brushless DC Motor Using Deep Neural Network and Mixture of Experts
Popis výsledku v původním jazyce
Brushless DC motors play a vital role as a workhorse in many applications, especially home appliances. In the competitive world of the day, a brushless DC motor is a wise choice for many applications because of its high power density, a simple driving circuit, and high efficiency. Accordingly, demonstrating the feasibility of a new controller on this type of motor has undoubtedly paramount importance. Two methods of speed controllers, namely linear-quadratic regulator, and proportional-integral-derivative, are mixed using a mixture of experts (MoE) for a single-phase PM brushless DC external rotor motor. The dynamic model of the SP PM BLDC ER motor characterizes the behavior of the motor, involving cogging torque and electromotive force (EMF) gained from 2D finite element analyses. The motor is supplied by a pulse width modulation inverter with a constant voltage source. The results disclose that the SP PM BLDC performance is enhanced and more robust during load disturbance. ANSYS and MATLAB environments are used for obtaining finite element analysis and dynamic analysis of single-phase PM brushless DC external rotor motors, respectively. The merits of the proposed approach are validated through implementing a low-scale experimental setup.
Název v anglickém jazyce
An Improvement in Dynamic Behavior of Single Phase PM Brushless DC Motor Using Deep Neural Network and Mixture of Experts
Popis výsledku anglicky
Brushless DC motors play a vital role as a workhorse in many applications, especially home appliances. In the competitive world of the day, a brushless DC motor is a wise choice for many applications because of its high power density, a simple driving circuit, and high efficiency. Accordingly, demonstrating the feasibility of a new controller on this type of motor has undoubtedly paramount importance. Two methods of speed controllers, namely linear-quadratic regulator, and proportional-integral-derivative, are mixed using a mixture of experts (MoE) for a single-phase PM brushless DC external rotor motor. The dynamic model of the SP PM BLDC ER motor characterizes the behavior of the motor, involving cogging torque and electromotive force (EMF) gained from 2D finite element analyses. The motor is supplied by a pulse width modulation inverter with a constant voltage source. The results disclose that the SP PM BLDC performance is enhanced and more robust during load disturbance. ANSYS and MATLAB environments are used for obtaining finite element analysis and dynamic analysis of single-phase PM brushless DC external rotor motors, respectively. The merits of the proposed approach are validated through implementing a low-scale experimental setup.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
11
Číslo periodika v rámci svazku
June 2023
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
64260-64271
Kód UT WoS článku
001021935000001
EID výsledku v databázi Scopus
2-s2.0-85163499389