Thin-Film Carbon Nitride (C2N)-Based Solar Cell Optimization Considering Zn1MINUS SIGN xMgxO as a Buffer Layer
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10254576" target="_blank" >RIV/61989100:27240/23:10254576 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-9717/11/1/91" target="_blank" >https://www.mdpi.com/2227-9717/11/1/91</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/pr11010091" target="_blank" >10.3390/pr11010091</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thin-Film Carbon Nitride (C2N)-Based Solar Cell Optimization Considering Zn1MINUS SIGN xMgxO as a Buffer Layer
Popis výsledku v původním jazyce
Carbon nitride (C2N), a two-dimensional material, is rapidly gaining popularity in the photovoltaic (PV) research community owing to its excellent properties, such as high thermal and chemical stability, non-toxic composition, and low fabrication cost over other thin-film solar cells. This study uses a detailed numerical investigation to explore the influence of C2N-based solar cells with zinc magnesium oxide (Zn1MINUS SIGN xMgxO) as a buffer layer. The SCAPS-1D simulator is utilized to examine the performance of four Mg-doped buffer layers (x = 0.0625, 0.125, 0.1875, and 0.25) coupled with the C2N-based absorber layer. The influence of the absorber and buffer layers' band alignment, quantum efficiency, thickness, doping density, defect density, and operating temperature are analyzed to improve the cell performance. Based on the simulations, increasing the buffer layer Mg concentration above x = 0.1875 reduces the device performance. Furthermore, it is found that increasing the absorber layer thickness is desirable for good device efficiency, whereas a doping density above 1015 cmMINUS SIGN 3 can degrade the cell performance. After optimization of the buffer layer thickness and doping density at 40 nm and 1018 cmMINUS SIGN 3, the cell displayed its maximum performance. Among the four structures, C2N/Zn0.8125Mg0.1875O demonstrated the highest PCE of 19.01% with a significant improvement in open circuit voltage (Voc), short circuit density (Jsc), and fill factor (FF). The recorded results are in good agreement with the standard theoretical studies.
Název v anglickém jazyce
Thin-Film Carbon Nitride (C2N)-Based Solar Cell Optimization Considering Zn1MINUS SIGN xMgxO as a Buffer Layer
Popis výsledku anglicky
Carbon nitride (C2N), a two-dimensional material, is rapidly gaining popularity in the photovoltaic (PV) research community owing to its excellent properties, such as high thermal and chemical stability, non-toxic composition, and low fabrication cost over other thin-film solar cells. This study uses a detailed numerical investigation to explore the influence of C2N-based solar cells with zinc magnesium oxide (Zn1MINUS SIGN xMgxO) as a buffer layer. The SCAPS-1D simulator is utilized to examine the performance of four Mg-doped buffer layers (x = 0.0625, 0.125, 0.1875, and 0.25) coupled with the C2N-based absorber layer. The influence of the absorber and buffer layers' band alignment, quantum efficiency, thickness, doping density, defect density, and operating temperature are analyzed to improve the cell performance. Based on the simulations, increasing the buffer layer Mg concentration above x = 0.1875 reduces the device performance. Furthermore, it is found that increasing the absorber layer thickness is desirable for good device efficiency, whereas a doping density above 1015 cmMINUS SIGN 3 can degrade the cell performance. After optimization of the buffer layer thickness and doping density at 40 nm and 1018 cmMINUS SIGN 3, the cell displayed its maximum performance. Among the four structures, C2N/Zn0.8125Mg0.1875O demonstrated the highest PCE of 19.01% with a significant improvement in open circuit voltage (Voc), short circuit density (Jsc), and fill factor (FF). The recorded results are in good agreement with the standard theoretical studies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Processes
ISSN
2227-9717
e-ISSN
2227-9717
Svazek periodika
11
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
15
Strana od-do
"nečislovano"
Kód UT WoS článku
000918971200001
EID výsledku v databázi Scopus
2-s2.0-85146783910