Driver Anomaly Detection Using Skeleton Images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10254632" target="_blank" >RIV/61989100:27240/23:10254632 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-47969-4_36" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-47969-4_36</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-47969-4_36" target="_blank" >10.1007/978-3-031-47969-4_36</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Driver Anomaly Detection Using Skeleton Images
Popis výsledku v původním jazyce
Many unexpected situations can occur while driving that may lead to dangerous accidents. Some of them may be caused by sudden health problems (e.g. heart attack, stroke, total collapse) or by driver inattention (e.g. microsleep, visual distraction). This has motivated the need for developing the methods that are able to monitor the driver's state in the first step and to prevent the accidents in the second step (e.g. by activating an acoustic signal, or even by taking over driving). In this paper, we propose a method that can be used for detecting the abnormal driving situations. Our approach is based on two main steps. In the first step, the MNIST-like skeleton images are created with the use of human pose detector. In the second step, an appropriate neural network is used for the final classification. Since we also include the anomalies consisting in an unusual trajectory of a certain body part (not only an unusual shape of body, which can be detected from the isolated images), short sequences of images are examined. The LSTM (long short-term memory) autoencoder is used as a main network architecture. The experiments that are presented show that the proposed method achieves better results than other compared methods.
Název v anglickém jazyce
Driver Anomaly Detection Using Skeleton Images
Popis výsledku anglicky
Many unexpected situations can occur while driving that may lead to dangerous accidents. Some of them may be caused by sudden health problems (e.g. heart attack, stroke, total collapse) or by driver inattention (e.g. microsleep, visual distraction). This has motivated the need for developing the methods that are able to monitor the driver's state in the first step and to prevent the accidents in the second step (e.g. by activating an acoustic signal, or even by taking over driving). In this paper, we propose a method that can be used for detecting the abnormal driving situations. Our approach is based on two main steps. In the first step, the MNIST-like skeleton images are created with the use of human pose detector. In the second step, an appropriate neural network is used for the final classification. Since we also include the anomalies consisting in an unusual trajectory of a certain body part (not only an unusual shape of body, which can be detected from the isolated images), short sequences of images are examined. The LSTM (long short-term memory) autoencoder is used as a main network architecture. The experiments that are presented show that the proposed method achieves better results than other compared methods.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ADVANCES IN VISUAL COMPUTING, ISVC 2023, PT I
ISBN
978-3-031-47968-7
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
13
Strana od-do
459-471
Název nakladatele
SPRINGER INTERNATIONAL PUBLISHING AG
Místo vydání
CHAM
Místo konání akce
Lake Tahoe, NV, USA
Datum konání akce
16. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001159734600036