Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A method for constructing word sense embeddings based on word sense induction

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10254662" target="_blank" >RIV/61989100:27240/23:10254662 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.nature.com/articles/s41598-023-40062-3" target="_blank" >https://www.nature.com/articles/s41598-023-40062-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-023-40062-3" target="_blank" >10.1038/s41598-023-40062-3</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A method for constructing word sense embeddings based on word sense induction

  • Popis výsledku v původním jazyce

    Polysemy is an inherent characteristic of natural language. In order to make it easier to distinguish between different senses of polysemous words, we propose a method for encoding multiple different senses of polysemous words using a single vector. The method first uses a two-layer bidirectional long short-term memory neural network and a self-attention mechanism to extract the contextual information of polysemous words. Then, a K-means algorithm, which is improved by optimizing the density peaks clustering algorithm based on cosine similarity, is applied to perform word sense induction on the contextual information of polysemous words. Finally, the method constructs the corresponding word sense embedded representations of the polysemous words. The results of the experiments demonstrate that the proposed method produces better word sense induction than Euclidean distance, Pearson correlation, and KL-divergence and more accurate word sense embeddings than mean shift, DBSCAN, spectral clustering, and agglomerative clustering. (C) 2023, Springer Nature Limited.

  • Název v anglickém jazyce

    A method for constructing word sense embeddings based on word sense induction

  • Popis výsledku anglicky

    Polysemy is an inherent characteristic of natural language. In order to make it easier to distinguish between different senses of polysemous words, we propose a method for encoding multiple different senses of polysemous words using a single vector. The method first uses a two-layer bidirectional long short-term memory neural network and a self-attention mechanism to extract the contextual information of polysemous words. Then, a K-means algorithm, which is improved by optimizing the density peaks clustering algorithm based on cosine similarity, is applied to perform word sense induction on the contextual information of polysemous words. Finally, the method constructs the corresponding word sense embedded representations of the polysemous words. The results of the experiments demonstrate that the proposed method produces better word sense induction than Euclidean distance, Pearson correlation, and KL-divergence and more accurate word sense embeddings than mean shift, DBSCAN, spectral clustering, and agglomerative clustering. (C) 2023, Springer Nature Limited.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

  • Kód UT WoS článku

    001045574100067

  • EID výsledku v databázi Scopus

    2-s2.0-85167532342