Retinal Vessel Segmentation by U-Net with VGG-16 Backbone on Patched Images with Smooth Blending
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10254784" target="_blank" >RIV/61989100:27240/23:10254784 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68145535:_____/23:00585312
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-40971-4_44" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-40971-4_44</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-40971-4_44" target="_blank" >10.1007/978-3-031-40971-4_44</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Retinal Vessel Segmentation by U-Net with VGG-16 Backbone on Patched Images with Smooth Blending
Popis výsledku v původním jazyce
Detecting vessels in retinal images is crucial for various medical applications, including diagnosing and monitoring eye diseases such as diabetic retinopathy, glaucoma, and macular degeneration. This paper presents a study on applying the U-Net architecture with a VGG-16 backbone for retinal vessel segmentation trained on patched images. As a source of training images, three well-labeled datasets, DRIVE, STARE, and CHASE DB1, were used for the training of the segmentation algorithm. We implemented the task-specific data class to further divide training images into patches, and the data augmentation techniques to increase the size of training set and to promote the model's generalization ability. Additionally, a blending technique was employed to achieve smooth predictions by blending image patches. The experimental results highlight the effectiveness of the proposed approach in accurately detecting blood vessels in retinal images, providing promising prospects for improving ophthalmic diagnosis and treatment.
Název v anglickém jazyce
Retinal Vessel Segmentation by U-Net with VGG-16 Backbone on Patched Images with Smooth Blending
Popis výsledku anglicky
Detecting vessels in retinal images is crucial for various medical applications, including diagnosing and monitoring eye diseases such as diabetic retinopathy, glaucoma, and macular degeneration. This paper presents a study on applying the U-Net architecture with a VGG-16 backbone for retinal vessel segmentation trained on patched images. As a source of training images, three well-labeled datasets, DRIVE, STARE, and CHASE DB1, were used for the training of the segmentation algorithm. We implemented the task-specific data class to further divide training images into patches, and the data augmentation techniques to increase the size of training set and to promote the model's generalization ability. Additionally, a blending technique was employed to achieve smooth predictions by blending image patches. The experimental results highlight the effectiveness of the proposed approach in accurately detecting blood vessels in retinal images, providing promising prospects for improving ophthalmic diagnosis and treatment.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes on Data Engineering and Communications Technologies. Volume 182
ISBN
978-3-031-40970-7
ISSN
2367-4512
e-ISSN
2367-4520
Počet stran výsledku
10
Strana od-do
465-474
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Čiang Mai
Datum konání akce
6. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—