Case Study: Utilising of Deep Learning Models for Fault Detection and Diagnosis of Photovoltaic Modules to Improve Solar Energy Constructions’ O&M Activities Quality
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10257187" target="_blank" >RIV/61989100:27240/23:10257187 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85197537225&origin=recordpage" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85197537225&origin=recordpage</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-99-4792-8_5" target="_blank" >10.1007/978-981-99-4792-8_5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Case Study: Utilising of Deep Learning Models for Fault Detection and Diagnosis of Photovoltaic Modules to Improve Solar Energy Constructions’ O&M Activities Quality
Popis výsledku v původním jazyce
Renewable energy sources have long been considered to be the sole alternatives to fossil fuels. Consequently, the usage of PV systems has experienced exponential growth. This growth, however, places gargantuan pressure on the solar energy industry’s manufacturing sector and subsequently begets issues associated with the quality of PV systems, especially the PV module, which is the systems’ most crucial component. Currently, fault detection and diagnosis are challenging due to many factors including but not limited to requirements of sophisticated measurement instruments and experts. Recent advances in deep learning have proven its feasibility in image classification and object detection. Thus, deep learning can be extended to visual fault detection using data generated by electroluminescence imaging instruments. Here, the authors propose an in-depth approach to exploratory data analysis of electroluminescence data, as well as several techniques based on both supervised and unsupervised learning to detect and diagnose visual faults and defects presented in a module.
Název v anglickém jazyce
Case Study: Utilising of Deep Learning Models for Fault Detection and Diagnosis of Photovoltaic Modules to Improve Solar Energy Constructions’ O&M Activities Quality
Popis výsledku anglicky
Renewable energy sources have long been considered to be the sole alternatives to fossil fuels. Consequently, the usage of PV systems has experienced exponential growth. This growth, however, places gargantuan pressure on the solar energy industry’s manufacturing sector and subsequently begets issues associated with the quality of PV systems, especially the PV module, which is the systems’ most crucial component. Currently, fault detection and diagnosis are challenging due to many factors including but not limited to requirements of sophisticated measurement instruments and experts. Recent advances in deep learning have proven its feasibility in image classification and object detection. Thus, deep learning can be extended to visual fault detection using data generated by electroluminescence imaging instruments. Here, the authors propose an in-depth approach to exploratory data analysis of electroluminescence data, as well as several techniques based on both supervised and unsupervised learning to detect and diagnose visual faults and defects presented in a module.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Information Systems Research in Vietnam, Volume 2: A Shared Vision and New Frontiers
ISBN
978-981-9947-91-1
Počet stran výsledku
15
Strana od-do
53-67
Počet stran knihy
67
Název nakladatele
Springer
Místo vydání
Singapur
Kód UT WoS kapitoly
—